Summary
In this chapter, we started with an introduction to a typical machine learning problem, online ad click-through prediction, and its inherent challenges, including categorical features. We then looked at tree-based algorithms that can take in both numerical and categorical features.
Next, we had an in-depth discussion about the decision tree algorithm: its mechanics, its different types, how to construct a tree, and two metrics (Gini Impurity and entropy) that measure the effectiveness of a split at a node. After constructing a tree by hand, we implemented the algorithm from scratch.
You also learned how to use the decision tree package from scikit-learn and applied it to predict the CTR. We continued to improve performance by adopting the feature-based random forest bagging algorithm. Finally, the chapter ended with several ways in which to tune a random forest model, along with two different ways of ensembling decision trees, random forest and GBT modeling. Bagging...