Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Digital Forensics Cookbook

You're reading from   Python Digital Forensics Cookbook Effective Python recipes for digital investigations

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781783987467
Length 412 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Chapin Bryce Chapin Bryce
Author Profile Icon Chapin Bryce
Chapin Bryce
Preston Miller Preston Miller
Author Profile Icon Preston Miller
Preston Miller
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Essential Scripting and File Information Recipes 2. Creating Artifact Report Recipes FREE CHAPTER 3. A Deep Dive into Mobile Forensic Recipes 4. Extracting Embedded Metadata Recipes 5. Networking and Indicators of Compromise Recipes 6. Reading Emails and Taking Names Recipes 7. Log-Based Artifact Recipes 8. Working with Forensic Evidence Container Recipes 9. Exploring Windows Forensic Artifacts Recipes - Part I 10. Exploring Windows Forensic Artifacts Recipes - Part II

Going spelunking

Recipe Difficulty: Medium

Python Version: 2.7

Operating System: Any

Log files can quickly become quite sizable due to the level of detail and time frame preserved. As you may have noticed, the CSV report from the prior recipe can easily become too large for our spreadsheet application to open or browse efficiently. Rather than analyzing this data in a spreadsheet, one alternative would be to load the data into a database.

Splunk is a platform that incorporates a NoSQL database with an ingestion and query engine, making it a powerful analysis tool. Its database operates in a manner like Elasticsearch or MongoDB, permitting the storage of documents or structured records. Because of this, we do not need to provide records with a consistent key-value mapping to store them in the database. This is what makes NoSQL databases so useful for log analysis, as log formats...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image