Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python 3 Text Processing with NLTK 3 Cookbook

You're reading from   Python 3 Text Processing with NLTK 3 Cookbook

Arrow left icon
Product type Paperback
Published in Aug 2014
Publisher
ISBN-13 9781782167853
Length 304 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jacob Perkins Jacob Perkins
Author Profile Icon Jacob Perkins
Jacob Perkins
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Tokenizing Text and WordNet Basics FREE CHAPTER 2. Replacing and Correcting Words 3. Creating Custom Corpora 4. Part-of-speech Tagging 5. Extracting Chunks 6. Transforming Chunks and Trees 7. Text Classification 8. Distributed Processing and Handling Large Datasets 9. Parsing Specific Data Types A. Penn Treebank Part-of-speech Tags
Index

Classifying with multiple binary classifiers


So far we have focused on binary classifiers, which classify with one of two possible labels. The same techniques for training a binary classifier can also be used to create a multi-class classifier, which is a classifier that can classify with one of the many possible labels. But there are also cases where you need to be able to classify with multiple labels. A classifier that can return more than one label is a multi-label classifier.

A common technique for creating a multi-label classifier is to combine many binary classifiers, one for each label. You train each binary classifier so that it either returns a known label or returns something else to signal that the label does not apply. Then, you can run all the binary classifiers on your feature set to collect all the applicable labels.

Getting ready

The reuters corpus contains multi-labeled text that we can use for training and evaluation:

>>> from nltk.corpus import reuters
>&gt...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime