Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Time Series Analysis

You're reading from   Practical Time Series Analysis Master Time Series Data Processing, Visualization, and Modeling using Python

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781788290227
Length 244 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Avishek Pal Avishek Pal
Author Profile Icon Avishek Pal
Avishek Pal
PKS Prakash PKS Prakash
Author Profile Icon PKS Prakash
PKS Prakash
Arrow right icon
View More author details
Toc

Autocorrelation and Partial autocorrelation

After applying the mathematical transformations discussed in the previous section, we will often be left with what is known as a stationary (or weakly stationary) time series, which is characterized by a constant mean E(xt) and correlation that depends only on the time lag between two time steps, but independent of the value of the time step. This type of covariance is the key in time series analysis and is called autocovariance or autocorrelation when normalized to the range of -1 to 1. Autocorrelation is therefore expressed as the second order moment E(xt,xt+h) = g(h) that evidently is a function of only the time lag h and independent of the actual time index t. This special definition of autocorrelation ensures that it is a time-independent property and hence can be reliably used for making inference about future realization of the time series.

Autocorrelation reflects the degree of linear dependency between the time series at index t and the time series at indices t-h or t+h. A positive autocorrelation indicates that the present and future values of the time series move in the same direction, whereas negative values means that present and future values move in the opposite direction. If autocorrelation is close to zero, temporal dependencies within the series may be hard to find. Because of this property, autocorrelation is useful in predicting the future state of a time series at h time steps ahead.

Presence of autocorrelation can be identified by plotting the observed values of the autocorrelation function (ACF) for a given time series. This plot is commonly referred as the ACF plot. Let us illustrate how plotting the observed values of the ACF can help in detecting presence of autocorrelation. For this we first plot the daily value of Dow Jones Industrial Average (DJIA) observed during January 2016 to December 2016:

Figure 1.14: Time series of Dow Jones Industrial Average

From the preceding figure, it might be apparent that when DJIA starts rising, it continues to rise for some time and vice-versa. However, we must ascertain this through an ACF plot.

The dataset for this plot has been downloaded from Yahoo! Finance (http://finance.yahoo.com) and kept as DJIA_Jan2016_Dec2016.xlsx under the datasets folder of this book's GitHub repository.

We will use pandas to read data from the Excel file and seaborn along with matplotlib to visualize the time series. Like before, we will also use the os package to set the working directory.

So let us first import these packages:

import os 
import pandas as pd 
%matplotlib inline 
from matplotlib import pyplot as plt 
import seaborn as sns  
os.chdir('D:/Practical Time Series') 

Next, we load the data as a pandas.DataFrame and display its first 10 rows to have a look at the columns of the dataset:

djia_df = pd.read_excel('datasets/DJIA_Jan2016_Dec2016.xlsx') 
djia_df.head(10) 

The preceding code displays the first 10 rows of the dataset as shown in the following table:

Date

Open

High

Low

Close

Adj Close

Volume

0

2016-01-04

17405.480469

17405.480469

16957.630859

17148.939453

17148.939453

148060000

1

2016-01-05

17147.500000

17195.839844

17038.609375

17158.660156

17158.660156

105750000

2

2016-01-06

17154.830078

17154.830078

16817.619141

16906.509766

16906.509766

120250000

3

2016-01-07

16888.359375

16888.359375

16463.630859

16514.099609

16514.099609

176240000

4

2016-01-08

16519.169922

16651.890625

16314.570313

16346.450195

16346.450195

141850000

5

2016-01-11

16358.709961

16461.849609

16232.030273

16398.570313

16398.570313

127790000

6

2016-01-12

16419.109375

16591.349609

16322.070313

16516.220703

16516.220703

117480000

7

2016-01-13

16526.630859

16593.509766

16123.200195

16151.410156

16151.410156

153530000

8

2016-01-14

16159.009766

16482.050781

16075.120117

16379.049805

16379.049805

158830000

9

2016-01-15

16354.330078

16354.330078

15842.110352

15988.080078

15988.080078

239210000

The first column in the preceding table is always the default row index created by the pandas.read_csv function.

We have used the closing value of DJIA, which is given in column Close, to illustrate autocorrelation and the ACF function. The time series plot has been generated as follows:

plt.figure(figsize=(5.5, 5.5)) 
g = sns.tsplot(djia_df['Close']) 
g.set_title('Dow Jones Industrial Average between Jan 2016 - Dec 2016') 
g.set_xlabel('Time') 
g.set_ylabel('Closing Value') 

Next, the ACF is estimated by computing autocorrelation for different values of lag h, which in this case is varied from 0 through 30. The Pandas.Series.autocorr function is used to calculate the autocorrelation for different values the lag. The code for this is given as follows:

lag = range(0,31) 
   djia_acf = [] 
for l in lag: 
    djia_acf.append(djia_df['Close'].autocorr(l)) 

The preceding code, iterates over a list of 31 values of the lag starting from 0 to 30. A lag of 0 indicates autocorrelation of an observation with itself (in other words self-correlation) and hence it is expected to be 1.0 as also confirmed in the following figure. Autocorrelation in DJIA Close values appears to linearly drop with the lag with an apparent change in the rate of the drop at around 18 days. At a lag of 30 days the ACF is a bit over 0.65.

Figure 1.15: Autocorrelation of Dow Jones Industrial Average calculated for various lags

The preceding plot has been generated by the following code:

plt.figure(figsize=(5.5, 5.5)) 
g = sns.pointplot(x=lag, y=djia_acf, markers='.') 
g.set_title('Autocorrelation function for DJIA') 
g.set_xlabel('Lag in terms of number of trading days') 
g.set_ylabel('Autocorrelation function') 
g.set_xticklabels(lag, rotation=90) 
plt.savefig('plots/ch2/B07887_02_11.png', format='png', dpi=300) 

The ACF plot shows that autocorrelation, in the case of DJIA Close values, has a functional dependency on the time lag between observations.

The code developed to run the analysis in this section is in the IPyton notebook Chapter1_Autocorrelation.ipynb under the code folder of the GitHub repository of this book.

We have written a for-loop to calculate the autocorrelation at different lags and plotted the results using the sns.pointplot function. Alternatively, the plot_acf function of statsmodels.graphics.tsaplots to compute and plot the autocorrelation at various lags. Additionally, this function also plots the 95% confidence intervals. Autocorrelation outside these confidence intervals is statistically significant correlation while those which are inside the confidence intervals are due to random noise.
The autocorrelation and confidence intervals generated by the plot_acf is shown in the following figure:

Figure 1.16: Autocorrelation of Dow Jones Industrial Average with 95% confidence intervals

So far, we have discussed autocorrelation which is a measure of linear dependency between variables x_t and x_(t+h). Autoregressive (AR) models captures this dependency as a linear regression between the x_(t+h) and x_t. However, time series tend to carry information and dependency structures in steps and therefore autocorrelation at lag h is also influenced by the intermediate variables x_t, x_(t+1)…x_(t+h-1). Therefore, autocorrelation is not the correct measure of the mutual correlation between x_t and x_(t+h) in the presence of the intermediate variables. Hence, it would erroneous to choose h in AR models based on autocorrelation. Partial autocorrelation solves this problem by measuring the correlation between x_t and x_(t+h) when the influence of the intermediate variables has been removed. Hence partial autocorrelation in time series analysis defines the correlation between x_t and x_(t+h) which is not accounted for by lags t+1 to t+h-1.
Partial autocorrelation helps in identifying the order h of an AR(h) model. Let us plot the partial autocorrelation of DJIA Close Values using plot_pacf as follows:

Figure 1.17: Partial autocorrelation of Dow Jones Industrial Average with 95% confidence intervals

The first partial autocorrelation at lag zero is always 1.0. As seen in the preceding figure, the partial autocorrelation only at lag one is statistically significant while for rest the lags it is within the 95% confidence intervals. Hence, for DJIA Close Values the order of AR models is one.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime