Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Deep Learning at Scale with MLflow

You're reading from   Practical Deep Learning at Scale with MLflow Bridge the gap between offline experimentation and online production

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781803241333
Length 288 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Yong Liu Yong Liu
Author Profile Icon Yong Liu
Yong Liu
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1 - Deep Learning Challenges and MLflow Prime FREE CHAPTER
2. Chapter 1: Deep Learning Life Cycle and MLOps Challenges 3. Chapter 2: Getting Started with MLflow for Deep Learning 4. Section 2 –
Tracking a Deep Learning Pipeline at Scale
5. Chapter 3: Tracking Models, Parameters, and Metrics 6. Chapter 4: Tracking Code and Data Versioning 7. Section 3 –
Running Deep Learning Pipelines at Scale
8. Chapter 5: Running DL Pipelines in Different Environments 9. Chapter 6: Running Hyperparameter Tuning at Scale 10. Section 4 –
Deploying a Deep Learning Pipeline at Scale
11. Chapter 7: Multi-Step Deep Learning Inference Pipeline 12. Chapter 8: Deploying a DL Inference Pipeline at Scale 13. Section 5 – Deep Learning Model Explainability at Scale
14. Chapter 9: Fundamentals of Deep Learning Explainability 15. Chapter 10: Implementing DL Explainability with MLflow 16. Other Books You May Enjoy

Summary

In this chapter, we set up a local MLflow development environment that has full support for backend storage and artifact storage using MySQL and the MinIO object store. This will be very useful for us when we develop MLflow-supported DL models in this book. We started by presenting the open provenance tracking framework and asked model provenance tracking questions that are of interest. We worked on addressing the issues of auto-logging and successfully registered a trained model by loading a trained model from a logged model in MLflow for prediction using the mlflow.pytorch.load_model API. We also experimented on how to directly use MLflow's log_metrics, log_params, and log_model APIs without auto-logging, which gives us more control and flexibility over how we can log additional or customized metrics and parameters. We were able to answer many of the provenance questions by performing model provenance tracking, as well as by providing a couple of the questions that require...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime