Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Natural Language Processing with Java

You're reading from   Natural Language Processing with Java Techniques for building machine learning and neural network models for NLP

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher
ISBN-13 9781788993494
Length 318 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ashish Bhatia Ashish Bhatia
Author Profile Icon Ashish Bhatia
Ashish Bhatia
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to NLP FREE CHAPTER 2. Finding Parts of Text 3. Finding Sentences 4. Finding People and Things 5. Detecting Part of Speech 6. Representing Text with Features 7. Information Retrieval 8. Classifying Texts and Documents 9. Topic Modeling 10. Using Parsers to Extract Relationships 11. Combined Pipeline 12. Creating a Chatbot 13. Other Books You May Enjoy

Dictionaries and tolerant retrieval


Dictionary data structures store the list term vocabulary, with the list of documents that contain the given term, also as posting.

Dictionary data structures can be stored in two different ways: using hash tables or trees. The naive approach to storing such data structures will lead to performance issues when the corpus grows. Some IR systems use the hash approach, whereas others use the tree approach to make the dictionaries. Both approaches have their pros and cons.

Hash tables store vocabulary terms in the form of integers, which are obtained by hashing. Lookups or searches in hash tables are faster,as it is time constant O(1). If the search is prefix-based search like find text starting with "abc", it will not work if the hash tables are used to store the terms because terms will be hashed. It is not easy to find minor variants. As the terms grow, rehashing is expensive.

A tree base approach uses a tree structure, normally a binary tree, which is very...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime