Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with R

You're reading from   Machine Learning with R Expert techniques for predictive modeling to solve all your data analysis problems

Arrow left icon
Product type Paperback
Published in Jul 2015
Publisher Packt
ISBN-13 9781784393908
Length 452 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Brett Lantz Brett Lantz
Author Profile Icon Brett Lantz
Brett Lantz
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introducing Machine Learning 2. Managing and Understanding Data FREE CHAPTER 3. Lazy Learning – Classification Using Nearest Neighbors 4. Probabilistic Learning – Classification Using Naive Bayes 5. Divide and Conquer – Classification Using Decision Trees and Rules 6. Forecasting Numeric Data – Regression Methods 7. Black Box Methods – Neural Networks and Support Vector Machines 8. Finding Patterns – Market Basket Analysis Using Association Rules 9. Finding Groups of Data – Clustering with k-means 10. Evaluating Model Performance 11. Improving Model Performance 12. Specialized Machine Learning Topics Index

Managing data with R

One of the challenges faced while working with massive datasets involves gathering, preparing, and otherwise managing data from a variety of sources. Although we will cover data preparation, data cleaning, and data management in depth by working on real-world machine learning tasks in the later chapters, this section will highlight the basic functionality to get data into and out of R.

Saving, loading, and removing R data structures

When you have spent a lot of time getting a data frame into the desired form, you shouldn't need to recreate your work each time you restart your R session. To save a data structure to a file that can be reloaded later or transferred to another system, use the save() function. The save() function writes one or more R data structures to the location specified by the file parameter. R data files have an .RData extension.

Suppose you have three objects named x, y, and z that you would like to save in a permanent file. Regardless of whether...

You have been reading a chapter from
Machine Learning with R - Second Edition
Published in: Jul 2015
Publisher: Packt
ISBN-13: 9781784393908
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime