Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Machine Learning Algorithms
Machine Learning Algorithms

Machine Learning Algorithms: Popular algorithms for data science and machine learning , Second Edition

eBook
€8.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Machine Learning Algorithms

Important Elements in Machine Learning

In this chapter, we're going to discuss some important elements and approaches that span through all machine learning topics and also create a philosophical foundation for many common techniques. First of all, it's useful to understand the mathematical foundation of data formats and prediction functions. In most algorithms, these concepts are treated in different ways, but the goal is always the same. More recent techniques, such as deep learning, extensively use energy/loss functions, just like the one described in this chapter, and even if there are slight differences, a good machine learning result is normally associated with the choice of the best loss function and the use of the right algorithm to minimize it.

In particular, we will be discussing the following topics:

  • The generic structure of a machine learning problem and...

Data formats

In both supervised and unsupervised learning problems, there will always be a dataset, defined as a finite set of real vectors with m features each:

Considering that our approach is always probabilistic, we need to assume each X as drawn from a statistical multivariate distribution, D, that is commonly known as a data generating process (the probability density function is often denoted as pdata(x)). For our purposes, it's also useful to add a very important condition upon the whole dataset X: we expect all samples to be independent and identically distributed (i.i.d). This means that all variables belong to the same distribution, D, and considering an arbitrary subset of k values, it happens that the following is true:

It's fundamental to understand that all machine learning tasks are based on the assumption of working with well-defined distributions...

Learnability

A parametric model can be split into two parts: a static structure and a dynamic set of parameters. The former is determined by the choice of a specific algorithm and is normally immutable (except in the cases when the model provides some remodeling functionalities), while the latter is the objective of our optimization. Considering n unbounded parameters, they generate an n-dimensional space (imposing bounds results in a subspace without relevant changes in our discussion) where each point, together with the immutable part of the estimator function, represents a learning hypothesis H (associated with a specific set of parameters):

The goal of a parametric learning process is to find the best hypothesis whose corresponding prediction error is at minimum and the residual generalization ability is enough to avoid overfitting. In the following diagram, we can see an...

Introduction to statistical learning concepts

Imagine that you need to design a spam-filtering algorithm, starting from this initial (over-simplistic) classification based on two parameters:

Parameter Spam emails (X1) Regular emails (X2)
p1 - Contains > 5 blacklisted words 80 20
p2 - Message length < 20 characters 75 25

We have collected 200 email messages (X) (for simplicity, we consider p1 and p2 as mutually exclusive) and we need to find a couple of probabilistic hypotheses (expressed in terms of p1 and p2), to determine the following:

We also assume the conditional independence of both terms (it means that hp1 and hp2 contribute in conjunction to spam in the same way as they would alone).

For example, we could think about rules (hypotheses) like so: "If there are more than five blacklisted words" or "If the message is less than 20 characters...

Class balancing

When working with the majority of machine learning algorithms (in particular, supervised ones), it's important to train the model with a dataset containing almost the same number of elements for each class. Remember that our goal is training models that can generalize in the best way for all of the possible classes and supposes that we have a binary dataset containing 1,000 samples with a proportion (0.95, 0.05). There are many scenarios where this proportion is very common. For example, a spam detector can collect lots of spam emails, but it's much more difficult to have access to personally accepted emails. However, we can suppose that some users (a very small percentage) decided to share anonymous regular messages so that our dataset consists of 5% non-spam entries.

Now, let's consider a static algorithm that always outputs the label 0 (for example...

Elements of information theory

A machine learning problem can also be analyzed in terms of information transfer or exchange. Our dataset is composed of n features, which are considered independent (for simplicity, even if it's often a realistic assumption) and drawn from n different statistical distributions. Therefore, there are n probability density functions pi(x) which must be approximated through other n qi(x) functions. In any machine learning task, it's very important to understand how two corresponding distributions diverge and what the amount of information we lose is when approximating the original dataset.

Entropy

The most useful measure in information theory (as well as in machine learning) is called...

Summary

In this chapter, we have introduced some main concepts about machine learning. We started with some basic mathematical definitions so that we have a clear view of data formats, standards, and certain kinds of functions. This notation will be adopted in the rest of the chapters in this book, and it's also the most diffused in technical publications. We also discussed how scikit-learn seamlessly works with multi-class problems, and when a strategy is preferable to another.

The next step was the introduction of some fundamental theoretical concepts regarding learnability. The main questions we tried to answer were: how can we decide if a problem can be learned by an algorithm and what is the maximum precision we can achieve? PAC learning is a generic but powerful definition that can be adopted when defining the boundaries of an algorithm. A PAC learnable problem, in...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Explore statistics and complex mathematics for data-intensive applications
  • Discover new developments in EM algorithm, PCA, and bayesian regression
  • Study patterns and make predictions across various datasets

Description

Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight. This second edition of Machine Learning Algorithms walks you through prominent development outcomes that have taken place relating to machine learning algorithms, which constitute major contributions to the machine learning process and help you to strengthen and master statistical interpretation across the areas of supervised, semi-supervised, and reinforcement learning. Once the core concepts of an algorithm have been covered, you’ll explore real-world examples based on the most diffused libraries, such as scikit-learn, NLTK, TensorFlow, and Keras. You will discover new topics such as principal component analysis (PCA), independent component analysis (ICA), Bayesian regression, discriminant analysis, advanced clustering, and gaussian mixture. By the end of this book, you will have studied machine learning algorithms and be able to put them into production to make your machine learning applications more innovative.

Who is this book for?

Machine Learning Algorithms is for you if you are a machine learning engineer, data engineer, or junior data scientist who wants to advance in the field of predictive analytics and machine learning. Familiarity with R and Python will be an added advantage for getting the best from this book.

What you will learn

  • Study feature selection and the feature engineering process
  • Assess performance and error trade-offs for linear regression
  • Build a data model and understand how it works by using different types of algorithm
  • Learn to tune the parameters of Support Vector Machines (SVM)
  • Explore the concept of natural language processing (NLP) and recommendation systems
  • Create a machine learning architecture from scratch

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Aug 30, 2018
Length: 522 pages
Edition : 2nd
Language : English
ISBN-13 : 9781789347999
Category :
Languages :
Concepts :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Aug 30, 2018
Length: 522 pages
Edition : 2nd
Language : English
ISBN-13 : 9781789347999
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 111.97
Python Machine Learning, Second Edition
€32.99
Machine Learning Algorithms
€41.99
Mastering Machine Learning Algorithms
€36.99
Total 111.97 Stars icon
Banner background image

Table of Contents

18 Chapters
A Gentle Introduction to Machine Learning Chevron down icon Chevron up icon
Important Elements in Machine Learning Chevron down icon Chevron up icon
Feature Selection and Feature Engineering Chevron down icon Chevron up icon
Regression Algorithms Chevron down icon Chevron up icon
Linear Classification Algorithms Chevron down icon Chevron up icon
Naive Bayes and Discriminant Analysis Chevron down icon Chevron up icon
Support Vector Machines Chevron down icon Chevron up icon
Decision Trees and Ensemble Learning Chevron down icon Chevron up icon
Clustering Fundamentals Chevron down icon Chevron up icon
Advanced Clustering Chevron down icon Chevron up icon
Hierarchical Clustering Chevron down icon Chevron up icon
Introducing Recommendation Systems Chevron down icon Chevron up icon
Introducing Natural Language Processing Chevron down icon Chevron up icon
Topic Modeling and Sentiment Analysis in NLP Chevron down icon Chevron up icon
Introducing Neural Networks Chevron down icon Chevron up icon
Advanced Deep Learning Models Chevron down icon Chevron up icon
Creating a Machine Learning Architecture Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.