Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Concurrent Programming in Scala

You're reading from   Learning Concurrent Programming in Scala Practical Multithreading in Scala

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher
ISBN-13 9781786466891
Length 434 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Aleksandar Prokopec Aleksandar Prokopec
Author Profile Icon Aleksandar Prokopec
Aleksandar Prokopec
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Introduction FREE CHAPTER 2. Concurrency on the JVM and the Java Memory Model 3. Traditional Building Blocks of Concurrency 4. Asynchronous Programming with Futures and Promises 5. Data-Parallel Collections 6. Concurrent Programming with Reactive Extensions 7. Software Transactional Memory 8. Actors 9. Concurrency in Practice 10. Reactors

Composing Observable objects


Having seen different ways of creating various types of the Observable objects, subscribing to their events, and using the Subscription objects, we turn our attention to composing the Observable objects into larger programs. From what we have seen so far, the advantages of using the Observable objects over a callback-based API are hardly worth the trouble.

The true power of Rx becomes apparent when we start composing the Observable objects using various combinators. We can think of an Observable object in a similar way as we think of Scala sequence collections. In a Scala sequence, represented by the Seq[T] trait, elements of type T are ordered in the memory according to their indices. In an Observable[T] trait, events of type T are ordered in time.

Let's use the Observable.interval factory method in order to create an Observable object, which asynchronously emits a number every 0.5 seconds, and then output the first five odd numbers. To do this, we first call...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image