Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Intelligent Projects Using Python

You're reading from   Intelligent Projects Using Python 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781788996921
Length 342 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Santanu Pattanayak Santanu Pattanayak
Author Profile Icon Santanu Pattanayak
Santanu Pattanayak
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Foundations of Artificial Intelligence Based Systems FREE CHAPTER 2. Transfer Learning 3. Neural Machine Translation 4. Style Transfer in Fashion Industry using GANs 5. Video Captioning Application 6. The Intelligent Recommender System 7. Mobile App for Movie Review Sentiment Analysis 8. Conversational AI Chatbots for Customer Service 9. Autonomous Self-Driving Car Through Reinforcement Learning 10. CAPTCHA from a Deep-Learning Perspective 11. Other Books You May Enjoy

Autoencoders

Much like RBMs, autoencoders are a class of unsupervised learning algorithms that aim to uncover the hidden structures within data. In principal component analysis (PCA), we try to capture the linear relationships among input variables, and try to represent the data in a reduced dimension space by taking linear combinations (of the input variables) that account for most of the variance in data. However, PCA would not be able to capture the nonlinear relationships between the input variables.

Autoencoders are neural networks that can capture the nonlinear interactions between input variables while representing the input in different dimensions in a hidden layer. Most of the time, the dimensions of the hidden layer are smaller to those of the input. This we skipped, with the assumption that there is an inherent low-dimensional structure to the high-dimensional data. For instance, high-dimensional images can be represented by a low-dimensional manifold, and autoencoders are often used to discover that structure. The following diagram illustrates the neural architecture of an autoencoder:

Figure 1.20: Autoencoder architecture

An autoencoder has two parts: an encoder and a decoder. The encoder tries to project the input data, x, into a hidden layer, h. The decoder tries to reconstruct the input from the hidden layer h. The weights accompanying such a network are trained by minimizing the reconstruction error that is, the error between the reconstructed input, , from the decoder and the original input. If the input is continuous, then the sum of squares of the reconstruction error is minimized, in order to learn the weights of the autoencoder.

If we represent the encoder by a function, fW (x), and the decoder by fU (x), where W and U are the weight matrices associated with the encoder and the decoder, then the following is the case:

(1)

(2)

The reconstruction error, C, over the training set, xi, i = 1, 2, 3, ...m, can be expressed as follows:

(3)

The autoencoder optimal weights, , can be learned by minimizing the cost function from (3), as follows:

(4)

Autoencoders are used for a variety of purposes, such as learning the latent representation of data, noise reduction, and feature detection. Noise reduction autoencoders take the noisy version of the actual input as their input. They try to construct the actual input that acts as a label for the reconstruction. Similarly, autoencoders can be used as generative models. One such class of autoencoders that can work as generative models is called variational autoencoders. Currently, variational autoencoders and GANs are very popular as generative models for image processing.

You have been reading a chapter from
Intelligent Projects Using Python
Published in: Jan 2019
Publisher: Packt
ISBN-13: 9781788996921
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image