Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On SAS for Data Analysis

You're reading from   Hands-On SAS for Data Analysis A practical guide to performing effective queries, data visualization, and reporting techniques

Arrow left icon
Product type Paperback
Published in Sep 2019
Publisher Packt
ISBN-13 9781788839822
Length 346 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Harish Gulati Harish Gulati
Author Profile Icon Harish Gulati
Harish Gulati
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: SAS Basics FREE CHAPTER
2. Introduction to SAS Programming 3. Data Manipulation and Transformation 4. Section 2: Merging, Optimizing, and Descriptive Statistics
5. Combining, Indexing, Encryption, and Compression Techniques Simplified 6. Power of Statistics, Reporting, Transforming Procedures, and Functions 7. Section 3: Advanced Programming
8. Advanced Programming Techniques - SAS Macros 9. Powerful Functions, Options, and Automatic Variables Simplified 10. Section 4: SQL in SAS
11. Advanced Programming Techniques Using PROC SQL 12. Deep Dive into PROC SQL 13. Section 5: Data Visualization and Reporting
14. Data Visualization 15. Reporting and Output Delivery System 16. Other Books You May Enjoy

Histograms

The exact use of histograms is to assess the probability distribution of a given variable by plotting the frequencies of observations occurring in certain ranges of values. They were first described by Karl Pearson. In their most simplistic form, histograms plot the frequency of a variable in a range of values called bins. We have chosen to start this chapter by describing histograms as they are the simplest of graphs that only accommodate one variable. Adding a density curve makes them a bit more informative but let's start with the basic form of the histogram. We will use the Class dataset that has been extensively used in the previous chapters:

Proc SGPLOT Data = Class;
Histogram Height;
Title 'Height of children in class across years';
Run;
The only change to the Class dataset is that the Weight variable has been renamed Weights in this chapter.
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime