So, why do we need DRQN when our DQN performed at a human level at Atari games? To answer this question, let us understand the problem of the partially observable Markov Decision Process (POMDP). An environment is called a partially observable MDP when we have a limited set of information available about the environment. So far, in the previous chapters, we have seen a fully observable MDP where we know all possible actions and states—although the agent might be unaware of transition and reward probabilities, it had complete knowledge of the environment, for example, a frozen lake environment, where we clearly know about all the states and actions of the environment; we easily modeled that environment as a fully observable MDP. But most of the real-world environments are only partially observable; we cannot see all the states. Consider the agent learning to walk in...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine