Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Machine Learning with Azure

You're reading from   Hands-On Machine Learning with Azure Build powerful models with cognitive machine learning and artificial intelligence

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781789131956
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (6):
Arrow left icon
Jen Stirrup Jen Stirrup
Author Profile Icon Jen Stirrup
Jen Stirrup
Ryan Murphy Ryan Murphy
Author Profile Icon Ryan Murphy
Ryan Murphy
Anindita Basak Anindita Basak
Author Profile Icon Anindita Basak
Anindita Basak
Thomas K Abraham Thomas K Abraham
Author Profile Icon Thomas K Abraham
Thomas K Abraham
Parashar Shah Parashar Shah
Author Profile Icon Parashar Shah
Parashar Shah
Lauri Lehman Lauri Lehman
Author Profile Icon Lauri Lehman
Lauri Lehman
+2 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. AI Cloud Foundations FREE CHAPTER 2. Data Science Process 3. Cognitive Services 4. Bot Framework 5. Azure Machine Learning Studio 6. Scalable Computing for Data Science 7. Machine Learning Server 8. HDInsight 9. Machine Learning with Spark 10. Building Deep Learning Solutions 11. Integration with Other Azure Services 12. End-to-End Machine Learning 13. Other Books You May Enjoy

The importance of artificial intelligence

Artificial intelligence (AI) is ever-increasingly being interwoven into the complex fabric of our technology-driven lives. Whether we realize it or not, AI is becoming an enabler for us to accomplish our day-to-day tasks more efficiently than we've ever done before. Personal assistants such as Siri, Cortana, and Alexa are some of the most visible AI tools that we come across frequently. Less obvious AI tools are ones such as those used by rideshare firms that suggest drivers move to a high-density area, and adjust prices dynamically based on demand.

Across the world, there are organizations at different stages of the AI journey. To some organizations, AI is the core of their business model. In other organizations, they see the potential of leveraging AI to compete and innovate their business. Successful organizations recognize that digital transformation through AI is key to their survival over the long term. Sometimes, this involves changing an organization's business model to incorporate AI through new technologies such as the Internet of Things (IoT). Across this spectrum of AI maturity, organizations face challenges implementing AI solutions. Challenges are typically related to scalability, algorithms, libraries, accuracy, retraining, pipelines, integration with other systems, and so on.

The field of AI has been around for several decades now, but it's growth and adoption over the last decade has been tremendous. This can be attributed to three main drivers: large data, large compute, and enhanced algorithms. The growth in data stems mostly from entities that generate data, or from human interactions with those entities. The growth in compute can be attributed to improved chip design, as well as innovative compute technologies. Algorithms have improved partly due to the open source community and partly due to the availability of larger data and compute.

You have been reading a chapter from
Hands-On Machine Learning with Azure
Published in: Oct 2018
Publisher: Packt
ISBN-13: 9781789131956
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime