Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Exploratory Data Analysis with R

You're reading from   Hands-On Exploratory Data Analysis with R Become an expert in exploratory data analysis using R packages

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789804379
Length 266 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Radhika Datar Radhika Datar
Author Profile Icon Radhika Datar
Radhika Datar
Harish Garg Harish Garg
Author Profile Icon Harish Garg
Harish Garg
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Setting Up Data Analysis Environment
2. Setting Up Our Data Analysis Environment FREE CHAPTER 3. Importing Diverse Datasets 4. Examining, Cleaning, and Filtering 5. Visualizing Data Graphically with ggplot2 6. Creating Aesthetically Pleasing Reports with knitr and R Markdown 7. Section 2: Univariate, Time Series, and Multivariate Data
8. Univariate and Control Datasets 9. Time Series Datasets 10. Multivariate Datasets 11. Section 3: Multifactor, Optimization, and Regression Data Problems
12. Multi-Factor Datasets 13. Handling Optimization and Regression Data Problems 14. Section 4: Conclusions
15. Next Steps 16. Other Books You May Enjoy

Tietjen-Moore test

The Tietjen-Moore test algorithm is a generalization of the Grubbs' test algorithm, which is basically used for univariate datasets. The following algorithm depicts the detection of the multiple outliers in a univariate dataset by applying the Tietjen-Moore test algorithm. The following are the parameters used:

  • Input parameter: Input data, including outliers
  • Output parameters: Original data with outliers marked

The workflow is shown as follows:

The step-wise approach will help us to create the function in the desired way. We will carry out the following steps to implement the detection of outliers in R for the bank dataset:

  1. Create a function that assists in generating the outliers in R:
> TietjenMoore <- function(dataSeries,k)
+ {
+ n = length(dataSeries)
+ ## Compute the absolute residuals.
+ r = abs(dataSeries - mean(dataSeries))
+ ## Sort data...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image