Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
GLSL Essentials

You're reading from   GLSL Essentials If you're involved in graphics programming, you need to know about shaders, and this is the book to do it. A hands-on guide to the OpenGL Shading Language, it walks you through the absolute basics to advanced techniques.

Arrow left icon
Product type Paperback
Published in Dec 2013
Publisher Packt
ISBN-13 9781849698009
Length 116 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jacobo Rodriguez Jacobo Rodriguez
Author Profile Icon Jacobo Rodriguez
Jacobo Rodriguez
Arrow right icon
View More author details
Toc

A brief history of graphics hardware


Graphics hardware (also called a graphics card or GPU) is not only a bunch of transistors that receive some generic orders and input data; it acts consequently like a CPU does. Orders issued to the hardware must be consistent and have an explicit and well known order at every stage. There are also data requirements in order to make things work as expected (for example, you cannot use vertices as input for fragment shaders, or textures as output in geometry shaders). Data and orders must follow a path and have to pass through some stages, and that cannot be altered.

This path is commonly called The Graphics Rendering Pipeline. Think of it like a pipe where we insert some data into one end—vertices, textures, shaders—and they start to travel through some small machines that perform very precise and concrete operations on the data and produce the final output at the other end: the final rendering.

In the early OpenGL years, the Graphics Rendering Pipeline was completely fixed, which means that the data always had to go through the same small machines, that always did the same operations, in the same order, and no operation could be skipped. These were the pre-shader ages (2002 and earlier).

The following is a simplified representation of the fixed pipeline, showing the most important building blocks and how the data flows through:

Between the years 2002 and 2004, some kind of programmability inside the GPU was made available, replacing some of those fixed stages. Those were the first shaders that graphics programmers had to code in a pseudo assembler language, and were very platform specific. In fact, programmers had to code at least one shader variant for each graphics hardware vendor, because they didn't share even the same assembler language, but at least they were able to replace some of the old-fashioned fixed pipeline stages by small low-level programs. Nonetheless, this was the beginning of the biggest revolution in real-time graphics programming history.

Some companies provided the programmers with other high-level programming solutions, such as Cg (from NVidia) or HLSL (from Microsoft), but those solutions weren't multiplatform. Cg was only usable with NVidia GPUs and HLSL was part of Direct3D.

During the year 2004, some companies realized the need for a high-level shader language, which would be common for different platforms; something like a standard for shader programming. Hence, OpenGL Shading Language (GLSL) was born and it allowed programmers to replace their multiple assembler code paths by a unique (at least in theory, because different GPUs have different capabilities) C-like shader, common for every hardware vendor.

In that year, only two pieces of the fixed pipeline could be replaced: the vertex processing unit, which took care of transform and lighting (T&L), and the fragment processing unit which was responsible for assigning colors to pixels. Those new programmable units were called vertex shaders and fragment shaders respectively. Also, another two stages were added later; geometry shaders and compute shaders were added to the official OpenGL specification in 2008 and 2012 respectively.

The following diagram shows an aspect of the new programmable pipeline after programmability changes:

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image