Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Functional Python Programming

You're reading from   Functional Python Programming Discover the power of functional programming, generator functions, lazy evaluation, the built-in itertools library, and monads

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788627061
Length 408 pages
Edition 2nd Edition
Languages
Arrow right icon
Toc

Table of Contents (18) Chapters Close

Preface 1. Understanding Functional Programming FREE CHAPTER 2. Introducing Essential Functional Concepts 3. Functions, Iterators, and Generators 4. Working with Collections 5. Higher-Order Functions 6. Recursions and Reductions 7. Additional Tuple Techniques 8. The Itertools Module 9. More Itertools Techniques 10. The Functools Module 11. Decorator Design Techniques 12. The Multiprocessing and Threading Modules 13. Conditional Expressions and the Operator Module 14. The PyMonad Library 15. A Functional Approach to Web Services 16. Optimizations and Improvements 17. Other Books You May Enjoy

Reducing with operator module functions

We'll look at one more way that we can use the operator definitions. We can use them with the built-in functools.reduce() function. The sum() function, for example, can be defined as follows:

sum = functools.partial(functools.reduce, operator.add)

This creates a partially evaluated version of the reduce() function with the first argument supplied. In this case, it's the + operator, implemented via the operator.add() function.

If we have a requirement for a similar function that computes a product, we can define it like this:

prod = functools.partial(functools.reduce, operator.mul)

This follows the pattern shown in the preceding example. We have a partially evaluated reduce() function with the first argument of the * operator, as implemented by the operator.mul() function.

It's not clear whether we can do similar things with...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image