Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Engineering with Google Cloud Platform

You're reading from   Data Engineering with Google Cloud Platform A guide to leveling up as a data engineer by building a scalable data platform with Google Cloud

Arrow left icon
Product type Paperback
Published in Apr 2024
Publisher Packt
ISBN-13 9781835080115
Length 476 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Adi Wijaya Adi Wijaya
Author Profile Icon Adi Wijaya
Adi Wijaya
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1: Getting Started with Data Engineering with GCP FREE CHAPTER
2. Chapter 1: Fundamentals of Data Engineering 3. Chapter 2: Big Data Capabilities on GCP 4. Part 2: Build Solutions with GCP Components
5. Chapter 3: Building a Data Warehouse in BigQuery 6. Chapter 4: Building Workflows for Batch Data Loading Using Cloud Composer 7. Chapter 5: Building a Data Lake Using Dataproc 8. Chapter 6: Processing Streaming Data with Pub/Sub and Dataflow 9. Chapter 7: Visualizing Data to Make Data-Driven Decisions with Looker Studio 10. Chapter 8: Building Machine Learning Solutions on GCP 11. Part 3: Key Strategies for Architecting Top-Notch Solutions
12. Chapter 9: User and Project Management in GCP 13. Chapter 10: Data Governance in GCP 14. Chapter 11: Cost Strategy in GCP 15. Chapter 12: CI/CD on GCP for Data Engineers 16. Chapter 13: Boosting Your Confidence as a Data Engineer 17. Index 18. Other Books You May Enjoy

Controlling user access to our data warehouse

Now that we’ve learned about user access at the organization, folder, and project levels, we will look specifically at access control lists (ACLs) in BigQuery. An ACL is the same concept as IAM, but the ACL terminology is more commonly used when talking about the data space. Planning an ACL in BigQuery means planning who can access what in BigQuery.

At a very high level, there are two main types of GCP permission in BigQuery, as follows:

  • Job permissions: BigQuery has job-level permissions. For example, for a user to be able to run a query inside the project, they need bigquery.jobs.create.

    Note that being able to run a query job doesn’t mean having access to the data. Access to the data is managed by the other permissions, which will be explained next.

  • Access permissions: This one is a little bit more complicated compared to job permissions. If we talk about data access, we need to understand that the main goal...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image