Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Analysis with Python

You're reading from   Data Analysis with Python A Modern Approach

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789950069
Length 490 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Taieb David Taieb
Author Profile Icon David Taieb
David Taieb
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Programming and Data Science – A New Toolset FREE CHAPTER 2. Python and Jupyter Notebooks to Power your Data Analysis 3. Accelerate your Data Analysis with Python Libraries 4. Publish your Data Analysis to the Web - the PixieApp Tool 5. Python and PixieDust Best Practices and Advanced Concepts 6. Analytics Study: AI and Image Recognition with TensorFlow 7. Analytics Study: NLP and Big Data with Twitter Sentiment Analysis 8. Analytics Study: Prediction - Financial Time Series Analysis and Forecasting 9. Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis 10. The Future of Data Analysis and Where to Develop your Skills A. PixieApp Quick-Reference Other Books You May Enjoy Index

Part 4 – Creating an ARIMA model for predicting flight delays


In Chapter 8, Analytics Study: Prediction - Financial Time Series Analysis and Forecasting, we used time series analysis to build a forecasting model for predicting financial stocks. We can actually use the same technique in flight delays since, after all, we are also dealing here with time series, and so in this section, we'll follow the exact same steps. For each destination airport and optional airline, we'll build a pandas DataFrame that contains matching flight information.

Note

Note: We'll use the statsmodels library again. Make sure to install it if you haven't done so already and refer to Chapter 8, Analytics Study: Prediction - Financial Time Series Analysis and Forecasting for more information.

As an example, let's focus on all the Delta (DL) flights with BOS as the destination:

df = flights[(flights["AIRLINE"] == "DL") & (flights["ORIGIN_AIRPORT"] == "BOS")]

Using the ARRIVAL_DELAY column as a value for our time series...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image