Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building Statistical Models in Python

You're reading from   Building Statistical Models in Python Develop useful models for regression, classification, time series, and survival analysis

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781804614280
Length 420 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Huy Hoang Nguyen Huy Hoang Nguyen
Author Profile Icon Huy Hoang Nguyen
Huy Hoang Nguyen
Paul N Adams Paul N Adams
Author Profile Icon Paul N Adams
Paul N Adams
Stuart J Miller Stuart J Miller
Author Profile Icon Stuart J Miller
Stuart J Miller
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Part 1:Introduction to Statistics
2. Chapter 1: Sampling and Generalization FREE CHAPTER 3. Chapter 2: Distributions of Data 4. Chapter 3: Hypothesis Testing 5. Chapter 4: Parametric Tests 6. Chapter 5: Non-Parametric Tests 7. Part 2:Regression Models
8. Chapter 6: Simple Linear Regression 9. Chapter 7: Multiple Linear Regression 10. Part 3:Classification Models
11. Chapter 8: Discrete Models 12. Chapter 9: Discriminant Analysis 13. Part 4:Time Series Models
14. Chapter 10: Introduction to Time Series 15. Chapter 11: ARIMA Models 16. Chapter 12: Multivariate Time Series 17. Part 5:Survival Analysis
18. Chapter 13: Time-to-Event Variables – An Introduction 19. Chapter 14: Survival Models 20. Index 21. Other Books You May Enjoy

VAR modeling

The AR(p), MA(q), ARMA(p,q), ARIMA(p,d,q)m, and SARIMA(p,d,q) models we looked at in the last chapter form the basis of multivariate VAR modeling. In this chapter, we have discussed ARIMA with exogenous variables (ARIMAX). We will now begin discussion on the VAR model. First, it is important to understand that while ARIMAX requires leading (future) values of the exogenous variables, no future values of these variables are required for the VAR model as they are all autoregressive to each other – hence the name vector autoregressive – and by definition not exogenous. To start, let us consider the two-variable, or bivariate, case. Consider a process y t that is the output of two different input variables, y t1 and y t2. Note that in matrix form, we are discussing the case of an nxm matrix (y n,m) where n corresponds to the point in time and m corresponds to the variables involved (variables 1,2, , m). We exclude the comma from notation...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image