Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Build Your Own Programming Language

You're reading from   Build Your Own Programming Language A programmer's guide to designing compilers, interpreters, and DSLs for solving modern computing problems

Arrow left icon
Product type Paperback
Published in Dec 2021
Publisher Packt
ISBN-13 9781800204805
Length 494 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Clinton  L. Jeffery Clinton L. Jeffery
Author Profile Icon Clinton L. Jeffery
Clinton L. Jeffery
Arrow right icon
View More author details
Toc

Table of Contents (25) Chapters Close

Preface 1. Section 1: Programming Language Frontends
2. Chapter 1: Why Build Another Programming Language? FREE CHAPTER 3. Chapter 2: Programming Language Design 4. Chapter 3: Scanning Source Code 5. Chapter 4: Parsing 6. Chapter 5: Syntax Trees 7. Section 2: Syntax Tree Traversals
8. Chapter 6: Symbol Tables 9. Chapter 7: Checking Base Types 10. Chapter 8: Checking Types on Arrays, Method Calls, and Structure Accesses 11. Chapter 9: Intermediate Code Generation 12. Chapter 10: Syntax Coloring in an IDE 13. Section 3: Code Generation and Runtime Systems
14. Chapter 11: Bytecode Interpreters 15. Chapter 12: Generating Bytecode 16. Chapter 13: Native Code Generation 17. Chapter 14: Implementing Operators and Built-In Functions 18. Chapter 15: Domain Control Structures 19. Chapter 16: Garbage Collection 20. Chapter 17: Final Thoughts 21. Section 4: Appendix
22. Assessments 23. Other Books You May Enjoy Appendix: Unicon Essentials

Questions

  1. Describe how intermediate code instructions with up to three addresses are converted into a sequence of stack machine instructions that contain at most one address.
  2. If a particular instruction (say it is instruction 15, at byte offset 120) is targeted by five different labels (for example, L2, L3, L5, L8, and L13), how are the labels processed when generating binary bytecode?
  3. In intermediate code, a method call consists of a sequence of PARM instructions followed by a CALL instruction. Does the described bytecode for doing a method call in bytecode match up well with the intermediate code? What is similar and what is different?
  4. CALL instructions in object-oriented (OO) languages such as Jzero are always preceded by a reference to the object (self, or this) on which the methods are being invoked… or are they? Explain a situation in which the CALL method instruction may have no object reference, and how the code generator described in this chapter should...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image