Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Bayesian Analysis with Python

You're reading from   Bayesian Analysis with Python Unleash the power and flexibility of the Bayesian framework

Arrow left icon
Product type Paperback
Published in Nov 2016
Publisher Packt
ISBN-13 9781785883804
Length 282 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Osvaldo Martin Osvaldo Martin
Author Profile Icon Osvaldo Martin
Osvaldo Martin
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Thinking Probabilistically - A Bayesian Inference Primer FREE CHAPTER 2. Programming Probabilistically – A PyMC3 Primer 3. Juggling with Multi-Parametric and Hierarchical Models 4. Understanding and Predicting Data with Linear Regression Models 5. Classifying Outcomes with Logistic Regression 6. Model Comparison 7. Mixture Models 8. Gaussian Processes Index

Posterior predictive checks

One of the nice elements of the Bayesian toolkit is that once we have a posterior, it is possible to use the posterior to generate future data y, that is, predictions. Posterior predictive checks consist of comparing the observed data and the predicted data to spot differences between these two sets. The main goal is to check for auto-consistency. The generated data and the observed data should look more or less similar, otherwise there was some problem during the modeling or some problem feeding the data to the model. But even if we did not make any mistake, differences could arise. Trying to understand the mismatch could lead us to improve models or at least to understand their limitations. Knowing which part of our problem/data the model is capturing well and which it is not is valuable information even if we do not know how to improve the model. Maybe the model captures well the mean behavior of our data but fails to predict rare values. This could be problematic for us, or maybe we only care about the mean, so this model will be okay for us. The general aim will be not to declare that a model is false; instead we follow George Box's advice, all models are wrong, but some are useful. We just want to know which part of the model we can trust and try to test whether the model is a good fit for our specific purpose. How confident one can be about a model is certainly not the same across disciplines. Physics can study systems under highly controlled conditions using high-level theories, so models are often seen as good descriptions of reality. Other disciplines such as sociology and biology study complex, difficult to isolate systems, and models have a weaker epistemological status. Nevertheless, independently of which discipline you are working in, models should always be checked and posterior predictive checks together with ideas from exploratory data analysis are a good way to check our models.

You have been reading a chapter from
Bayesian Analysis with Python
Published in: Nov 2016
Publisher: Packt
ISBN-13: 9781785883804
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image