Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Azure Data Engineer Associate Certification Guide

You're reading from   Azure Data Engineer Associate Certification Guide A hands-on reference guide to developing your data engineering skills and preparing for the DP-203 exam

Arrow left icon
Product type Paperback
Published in Feb 2022
Publisher Packt
ISBN-13 9781801816069
Length 574 pages
Edition 1st Edition
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Newton Alex Newton Alex
Author Profile Icon Newton Alex
Newton Alex
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Part 1: Azure Basics
2. Chapter 1: Introducing Azure Basics FREE CHAPTER 3. Part 2: Data Storage
4. Chapter 2: Designing a Data Storage Structure 5. Chapter 3: Designing a Partition Strategy 6. Chapter 4: Designing the Serving Layer 7. Chapter 5: Implementing Physical Data Storage Structures 8. Chapter 6: Implementing Logical Data Structures 9. Chapter 7: Implementing the Serving Layer 10. Part 3: Design and Develop Data Processing (25-30%)
11. Chapter 8: Ingesting and Transforming Data 12. Chapter 9: Designing and Developing a Batch Processing Solution 13. Chapter 10: Designing and Developing a Stream Processing Solution 14. Chapter 11: Managing Batches and Pipelines 15. Part 4: Design and Implement Data Security (10-15%)
16. Chapter 12: Designing Security for Data Policies and Standards 17. Part 5: Monitor and Optimize Data Storage and Data Processing (10-15%)
18. Chapter 13: Monitoring Data Storage and Data Processing 19. Chapter 14: Optimizing and Troubleshooting Data Storage and Data Processing 20. Part 6: Practice Exercises
21. Chapter 15: Sample Questions with Solutions 22. Other Books You May Enjoy

Handling skews in data

A data skew refers to an extreme, uneven distribution of data in a dataset. Let's take an example of the number of trips per month of our Imaginary Airport Cab (IAC) example. Let's assume the data distribution as shown in the following graph:

Figure 14.8 – An example of skewed data

As you can see from the graph, the trip numbers for November and December are quite high compared to the other months. Such an uneven distribution of data is referred to as a data skew. Now, if we were to distribute the monthly data to individual compute nodes, the nodes that are processing the data for November and December are going to take a lot more time than the ones processing the other months. And if we were generating an annual report, then all the other stages would have to wait for the November and December stages to complete. Such wait times are inefficient for job performance. To make the processing more efficient, we will have...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image