Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Artificial Intelligence for IoT Cookbook

You're reading from   Artificial Intelligence for IoT Cookbook Over 70 recipes for building AI solutions for smart homes, industrial IoT, and smart cities

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781838981983
Length 260 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Michael Roshak Michael Roshak
Author Profile Icon Michael Roshak
Michael Roshak
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Setting Up the IoT and AI Environment 2. Handling Data FREE CHAPTER 3. Machine Learning for IoT 4. Deep Learning for Predictive Maintenance 5. Anomaly Detection 6. Computer Vision 7. NLP and Bots for Self-Ordering Kiosks 8. Optimizing with Microcontrollers and Pipelines 9. Deploying to the Edge 10. About Packt

Face detection on constrained devices

Deep neural networks tend to outperform other classification techniques. However, with IoT devices, there is not a large amount of RAM, compute, or storage. On constrained devices, RAM and storage are often in MB and not in GB, making traditional classifiers not possible. Some video classification services in the cloud charge over $10,000 per device for live streaming video. OpenCV's Haar classifiers have the same underlying principles as a convolutional neural network but at a fraction of the compute and storage. OpenCV is available in multiple languages and runs on some of the most constrained devices.

In this recipe, we are going to set up a Haar Cascade to detect if a person is close to the camera. This is often used in Kiosk and other interactive smart devices. The Haar Cascade can be run at a high rate of speed and when it finds a face that is close to the machine it can send that image via a cloud service or a different onboard machine...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image