Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
50 Algorithms Every Programmer Should Know

You're reading from   50 Algorithms Every Programmer Should Know Tackle computer science challenges with classic to modern algorithms in machine learning, software design, data systems, and cryptography

Arrow left icon
Product type Paperback
Published in Sep 2023
Publisher Packt
ISBN-13 9781803247762
Length 538 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Imran Ahmad Imran Ahmad
Author Profile Icon Imran Ahmad
Imran Ahmad
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Section 1: Fundamentals and Core Algorithms FREE CHAPTER
2. Overview of Algorithms 3. Data Structures Used in Algorithms 4. Sorting and Searching Algorithms 5. Designing Algorithms 6. Graph Algorithms 7. Section 2: Machine Learning Algorithms
8. Unsupervised Machine Learning Algorithms 9. Traditional Supervised Learning Algorithms 10. Neural Network Algorithms 11. Algorithms for Natural Language Processing 12. Understanding Sequential Models 13. Advanced Sequential Modeling Algorithms 14. Section 3: Advanced Topics
15. Recommendation Engines 16. Algorithmic Strategies for Data Handling 17. Cryptography 18. Large-Scale Algorithms 19. Practical Considerations 20. Other Books You May Enjoy
21. Index

Exploring autoencoders

Autoencoders occupy a unique niche in the landscape of neural network architectures, playing a pivotal role in the narrative of advanced sequential models. Essentially, an autoencoder is designed to create a network where the output mirrors its input, implying a compression of the input data into a more succinct, lower-dimensional latent representation.

The autoencoder structure can be conceptualized as a dual-phase process: the encoding phase and the decoding phase.

Consider the following diagram:

Figure 11.1: Autoencoder architecture

In this diagram we make the following assumptions:

  • x corresponds to the input data
  • h is the compressed form of our data
  • r denotes the output, a recreation or approximation of x

We can see that the two phases are represented by f and g. Let’s look at them in more detail:

  • Encoding (f): Described mathematically as h = f(x). In this stage, the input, represented...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime