Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Scala for Machine Learning, Second Edition

You're reading from   Scala for Machine Learning, Second Edition Build systems for data processing, machine learning, and deep learning

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787122383
Length 740 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Getting Started 2. Data Pipelines FREE CHAPTER 3. Data Preprocessing 4. Unsupervised Learning 5. Dimension Reduction 6. Naïve Bayes Classifiers 7. Sequential Data Models 8. Monte Carlo Inference 9. Regression and Regularization 10. Multilayer Perceptron 11. Deep Learning 12. Kernel Models and SVM 13. Evolutionary Computing 14. Multiarmed Bandits 15. Reinforcement Learning 16. Parallelism in Scala and Akka 17. Apache Spark MLlib A. Basic Concepts B. References Index

Why machine learning?

The recent explosion in the number of digital devices has generated an ever-increasing amount of data. The best analogy I can find to describe the need, desire, and urgency for extracting knowledge from large datasets is the process of extracting a precious metal from a mine, and in some cases, extracting blood from a stone.

Knowledge is quite often defined as a model that can be constantly updated or tweaked as new data comes into play. Models are obviously domain-specific, ranging from credit risk assessment, face recognition, maximization of quality of service, classification of pathological symptoms of disease, optimization of computer networks, and security intrusion detection, to customers' online behavior and purchase history.

Machine learning problems are categorized as classification, prediction, optimization, and regression.

Classification

The purpose of classification is to extract knowledge from historical data. For instance, a classifier can be built to identify a disease from a set of symptoms. The scientist collects information regarding body temperature (continuous variable), congestion (discrete variables of HIGH, MEDIUM, and LOW), and the actual diagnosis (flu). This dataset is used to create a model such as IF temperature > 102 AND congestion = HIGH THEN patient has the flu (probability 0.72), which doctors can use in their diagnosis.

Prediction

Once the model is trained using historical observations and validated against historical observations, it can be used to predict some outcome. A doctor collects symptoms from a patient, such as body temperature and nasal congestion, and anticipates the state of his/her health.

Optimization

Some global optimization problems are intractable using traditional linear and non-linear optimization methods. Machine learning techniques improve the chances that the optimization method converges toward a solution (intelligent search). You can imagine that fighting the spread of a new virus requires optimizing a process that may evolve over time as more symptoms and cases are uncovered.

Regression

Regression is a classification technique that is particularly suitable for a continuous model. Linear (least squares), polynomial, and logistic regressions are among the most commonly used techniques to fit a parametric model or function, y= f (x), x={xi} to a dataset. Regression is sometimes regarded as a specialized case of classification for which the output variables are continuous instead of categorical.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image