Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala Data Analysis Cookbook (new)

You're reading from   Scala Data Analysis Cookbook (new) Navigate the world of data analysis, visualization, and machine learning with over 100 hands-on Scala recipes

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781784396749
Length 254 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Arun Manivannan Arun Manivannan
Author Profile Icon Arun Manivannan
Arun Manivannan
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Getting Started with Breeze FREE CHAPTER 2. Getting Started with Apache Spark DataFrames 3. Loading and Preparing Data – DataFrame 4. Data Visualization 5. Learning from Data 6. Scaling Up 7. Going Further Index

Storing data as Parquet files

Parquet (https://parquet.apache.org/) is rapidly becoming the go-to data storage format in the world of big data because of the distinct advantages it offers:

  • It has a column-based representation of data. This is better represented in a picture, as follows:
    Storing data as Parquet files

    As you can see in the preceding screenshot, Parquet stores data in chunks of rows, say 100 rows. In Parquet terms, these are called RowGroups. Each of these RowGroups has chunks of columns inside them (or column chunks). Column chunks can hold more than a single unit of data for a particular column (as represented in the blue box in the first column). For example. Jai, Suri, and Dhina form a single chunk even though they are composed of three single units of data for Name.

    Another unique feature is that these column chunks (groups of a single column's information) can be read independently. Let's consider the following image:

    Storing data as Parquet files

    We can see that the items of column data are stored next to each other in...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime