Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning

You're reading from   Python Deep Learning Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789348460
Length 386 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (5):
Arrow left icon
Gianmario Spacagna Gianmario Spacagna
Author Profile Icon Gianmario Spacagna
Gianmario Spacagna
Daniel Slater Daniel Slater
Author Profile Icon Daniel Slater
Daniel Slater
Valentino Zocca Valentino Zocca
Author Profile Icon Valentino Zocca
Valentino Zocca
Peter Roelants Peter Roelants
Author Profile Icon Peter Roelants
Peter Roelants
Ivan Vasilev Ivan Vasilev
Author Profile Icon Ivan Vasilev
Ivan Vasilev
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Machine Learning - an Introduction 2. Neural Networks FREE CHAPTER 3. Deep Learning Fundamentals 4. Computer Vision with Convolutional Networks 5. Advanced Computer Vision 6. Generating Images with GANs and VAEs 7. Recurrent Neural Networks and Language Models 8. Reinforcement Learning Theory 9. Deep Reinforcement Learning for Games 10. Deep Learning in Autonomous Vehicles 11. Other Books You May Enjoy

What this book covers

Chapter 1, Machine Learning – an Introduction, will introduce you to the basic ML concepts and terms that we'll be using throughout the book. It will give an overview of the most popular ML algorithms and applications today. It will also introduce the DL library that we'll use throughout the book.

Chapter 2, Neural Networks, will introduce you to the mathematics of neural networks. We'll learn about their structure, how they make predictions (that's the feedforward part), and how to train them using gradient descent and backpropagation (explained through derivatives). The chapter will also discuss how to represent operations with neural networks as vector operations.

Chapter 3, Deep Learning Fundamentals, will explain the rationale behind using deep neural networks (as opposed to shallow ones). It will take an overview of the most popular DL libraries and real-world applications of DL.

Chapter 4, Computer Vision with Convolutional Networks, teaches you about convolutional neural networks (the most popular type of neural network for computer vision tasks). We'll learn about their architecture and building blocks (the convolutional, pooling, and capsule layers) and how to use a convolutional network for an image classification task.

Chapter 5, Advanced Computer Vision, will build on the previous chapter and cover more advanced computer vision topics. You will learn not only how to classify images, but also how to detect an object's location and segment every pixel of an image. We'll learn about advanced convolutional network architectures and the useful practical technique of transfer learning.

Chapter 6, Generating Images with GANs and VAEs, will introduce generative models (as opposed to discriminative models, which is what we'll have covered up until this point). You will learn about two of the most popular unsupervised generative model approaches, VAEs and GANs, as well some of their exciting applications.

Chapter 7, Recurrent Neural Networks and Language Models, will introduce you to the most popular recurrent network architectures: LSTM and gated recurrent unit (GRU). We'll learn about the paradigms of NLP with recurrent neural networks and the latest algorithms and architectures to solve NLP problems. We'll also learn the basics of speech-to-text recognition.

Chapter 8, Reinforcement Learning Theory, will introduce you to the main paradigms and terms of RL, a separate ML field. You will learn about the most important RL algorithms. We'll also learn about the link between DL and RL. Throughout the chapter, we will use toy examples to better demonstrate the concepts of RL.

Chapter 9, Deep Reinforcement Learning for Games, you will understand some real-world applications of RL algorithms, such as playing board games and computer games. We'll learn how to combine the knowledge from the previous parts of the book to create better-than-human computer players on some popular games.

Chapter 10, Deep Learning in Autonomous vehicles, we'll discuss what sensors autonomous vehicles use, so they can create the 3D model of the environment. These include cameras, radar sensors, ultrasound sensors, Lidar, as well as accurate GPS positioning. We'll talk about how to apply deep learning algorithms for processing the input of these sensors. For example, we can use instance segmentation and object detection to detect pedestrians and vehicles using the vehicle cameras. We'll also make an overview of some of the approaches vehicle manufacturers use to solve this problem (for example Audi, Tesla, and so on).

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime