Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Python Deep Learning
Python Deep Learning

Python Deep Learning: Understand how deep neural networks work and apply them to real-world tasks , Third Edition

eBook
$35.98 $39.99
Paperback
$49.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Python Deep Learning

1

Machine Learning – an Introduction

Machine learning (ML) techniques are being applied in a variety of fields, and data scientists are being sought after in many different industries. With ML, we identify the processes through which we gain knowledge that is not readily apparent from data to make decisions. Applications of ML techniques may vary greatly and are found in disciplines as diverse as medicine, finance, and advertising.

In this chapter, we’ll present different ML approaches, techniques, and some of their applications to real-world problems, and we’ll also introduce one of the major open source packages available in Python for ML, PyTorch. This will lay the foundation for later chapters in which we’ll focus on a particular type of ML approach using neural networks (NNs). In particular, we will focus on deep learning (DL).
DL makes use of more advanced NNs than those used previously. This is not only a result of recent developments in the theory but also advancements in computer hardware. This chapter will summarize what ML is and what it can do, preparing you to better understand how DL differentiates itself from popular traditional ML techniques.

In this chapter, we’re going to cover the following main topics:

  • Introduction to ML
  • Different ML approaches
  • Neural networks
  • Introduction to PyTorch
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Understand the theory, mathematical foundations and structure of deep neural networks
  • Become familiar with transformers, large language models, and convolutional networks
  • Learn how to apply them to various computer vision and natural language processing problems
  • Purchase of the print or Kindle book includes a free PDF eBook

Description

The field of deep learning has developed rapidly recently and today covers a broad range of applications. This makes it challenging to navigate and hard to understand without solid foundations. This book will guide you from the basics of neural networks to the state-of-the-art large language models in use today. The first part of the book introduces the main machine learning concepts and paradigms. It covers the mathematical foundations, the structure, and the training algorithms of neural networks and dives into the essence of deep learning. The second part of the book introduces convolutional networks for computer vision. We’ll learn how to solve image classification, object detection, instance segmentation, and image generation tasks. The third part focuses on the attention mechanism and transformers – the core network architecture of large language models. We’ll discuss new types of advanced tasks they can solve, such as chatbots and text-to-image generation. By the end of this book, you’ll have a thorough understanding of the inner workings of deep neural networks. You'll have the ability to develop new models and adapt existing ones to solve your tasks. You’ll also have sufficient understanding to continue your research and stay up to date with the latest advancements in the field.

Who is this book for?

This book is for software developers/engineers, students, data scientists, data analysts, machine learning engineers, statisticians, and anyone interested in deep learning. Prior experience with Python programming is a prerequisite.

What you will learn

  • Establish theoretical foundations of deep neural networks
  • Understand convolutional networks and apply them in computer vision applications
  • Become well versed with natural language processing and recurrent networks
  • Explore the attention mechanism and transformers
  • Apply transformers and large language models for natural language and computer vision
  • Implement coding examples with PyTorch, Keras, and Hugging Face Transformers
  • Use MLOps to develop and deploy neural network models

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Nov 24, 2023
Length: 362 pages
Edition : 3rd
Language : English
ISBN-13 : 9781837633456
Category :
Concepts :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Nov 24, 2023
Length: 362 pages
Edition : 3rd
Language : English
ISBN-13 : 9781837633456
Category :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 149.97
50 Algorithms Every Programmer Should Know
$49.99
Python Deep Learning
$49.99
Machine Learning Engineering  with Python
$49.99
Total $ 149.97 Stars icon

Table of Contents

16 Chapters
Part 1:Introduction to Neural Networks Chevron down icon Chevron up icon
Chapter 1: Machine Learning – an Introduction Chevron down icon Chevron up icon
Chapter 2: Neural Networks Chevron down icon Chevron up icon
Chapter 3: Deep Learning Fundamentals Chevron down icon Chevron up icon
Part 2: Deep Neural Networks for Computer Vision Chevron down icon Chevron up icon
Chapter 4: Computer Vision with Convolutional Networks Chevron down icon Chevron up icon
Chapter 5: Advanced Computer Vision Applications Chevron down icon Chevron up icon
Part 3: Natural Language Processing and Transformers Chevron down icon Chevron up icon
Chapter 6: Natural Language Processing and Recurrent Neural Networks Chevron down icon Chevron up icon
Chapter 7: The Attention Mechanism and Transformers Chevron down icon Chevron up icon
Chapter 8: Exploring Large Language Models in Depth Chevron down icon Chevron up icon
Chapter 9: Advanced Applications of Large Language Models Chevron down icon Chevron up icon
Part 4: Developing and Deploying Deep Neural Networks Chevron down icon Chevron up icon
Chapter 10: Machine Learning Operations (MLOps) Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9
(15 Ratings)
5 star 86.7%
4 star 13.3%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Didi Jan 15, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Deep learning (DL) has taken the world by storm, revolutionizing entire fields such as computer vision and natural language processing. This comprehensive book is a wonderful and practical resource for understanding DL from the ground up, and covers the most important areas of DL applications, including computer vision, natural language processing (NLP), and large language models (LLMs).The book begins with a clear and detailed overview of machine learning, neural networks, and the fundamentals of deep learning. It proceeds with detailed examples of useful computer vision models and applications, such as object detection, image segmentation, and image generation using diffusion models. A significant part of the book is dedicated to models for natural language processing and LLMs, including an in-depth description of the transformer architecture, which is at the heart of such models these days. The last part of the book is focused on developing and deploying DL models in practice (aka MLOps).I especially liked the practical, hands-on approach taken by the author, where helpful code examples accompany the textual descriptions, and greatly assist in reinforcing the materials and concepts presented in the book. The accompanying GitHub repository includes all code examples, and is very useful as well.This practical guide will benefit any software engineer, researcher, data scientist or machine learning practitioner who wants to better understand how to build real-world DL models for computer vision and natural language processing. Prior familiarity with the Python programming language will be very helpful to fully benefit from this book.Highly recommended!
Amazon Verified review Amazon
Patrick Nicolas Sep 26, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I liked:This book offers a thorough introduction that gradually increases in complexity, making it ideal for novice data scientists, while experienced machine learning professionals will find numerous practical insights to help avoid common pitfalls in model development.Each chapter is accompanied by relevant Python code, allowing readers to explore the implementations on the go via a tablet or smartphone, without needing to access GitHub or an editor. Chapters are well-structured, including valuable highlights and concluding with helpful takeaways.The author incorporates familiar diagrams and illustrations from well-established and foundational papers, creating a sense of continuity for readers familiar with the field.I personally appreciated the in-depth focus on often underrepresented topics, such as activation functions, mixed-precision training, various word embeddings, and conditioning transformers, among others. There's also a well-rounded section on MLOps, which includes tools like ONNX operators, TensorBoard, and Flask for deployment (although it would have been nice to see FastAPI as an alternative).Suggestions:The book would benefit from a clear statement of the Python and NumPy versions used, although I encountered only a minor issue when running the sample code with Python 3.12 and NumPy 2.1.1.While the discussions of older deep learning models, such as Inception networks or YOLO, provide valuable historical context, these sections may not appeal to all readers.One last note:This edition replaces the previous chapters on reinforcement learning with a more detailed introduction to transformers and their implementation.Conclusion:Overall, this is a well-crafted and informative deep learning book, enriched with well-documented Python code. It will appeal to both beginner and veteran data scientists, as well as software engineers.
Amazon Verified review Amazon
Ryan Kreisel Dec 06, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book's structure is thoughtfully crafted, starting with foundational concepts and gradually progressing to advanced topics, ensuring a smooth learning curve for readers of all levels. Moreover, Ivan Vasilev writing style is engaging and clear, making even the most intricate concepts digestible. But what truly sets "Python Deep Learning" apart is its relevance in the rapidly evolving landscape of artificial intelligence. And if you can't decide on Kindle or Paperback, the cover is pretty stylish and sits great on the bookshelf once you have read it.
Amazon Verified review Amazon
H2N Dec 14, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book, Python Deep Learning, introduces different key architectures such as transformers, LLMs and convolutional networks. It is helpful for someone who wants to start to explore deep learning approach and also good for experts such as programmer, developers, data scientists. The book covers from theoretical concepts to practical coding in PyTorch, Keras and Hugging Face Transformers, making advanced topics approachable through a combination of theory and real world application.
Amazon Verified review Amazon
KP Dec 19, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Python Deep Learning is an exceptional resource that takes readers on an enlightening journey through the intricacies of neural networks, providing a comprehensive guide for both beginners and seasoned practitioners. The book combines clear explanations, practical examples (including code), and hands-on exercises to make the complex world of deep learning accessible to all. The writing is clear, concise, and avoids unnecessary jargon, making it an ideal companion for readers with varying levels of expertise.The practical examples and code snippets are thoughtfully crafted, enabling readers to experiment with the concepts introduced in each chapter. Additionally, the book includes numerous real-world case studies and applications, ranging from image recognition and natural language processing to reinforcement learning. This diversity allows readers to appreciate the versatility of deep learning across various domains.This book is a gem for anyone looking to master neural networks using Python. Highly recommended.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.