Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Data Wrangling

You're reading from   Practical Data Wrangling Expert techniques for transforming your raw data into a valuable source for analytics

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher Packt
ISBN-13 9781787286139
Length 204 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Allan Visochek Allan Visochek
Author Profile Icon Allan Visochek
Allan Visochek
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Programming with Data FREE CHAPTER 2. Introduction to Programming in Python 3. Reading, Exploring, and Modifying Data - Part I 4. Reading, Exploring, and Modifying Data - Part II 5. Manipulating Text Data - An Introduction to Regular Expressions 6. Cleaning Numerical Data - An Introduction to R and RStudio 7. Simplifying Data Manipulation with dplyr 8. Getting Data from the Web 9. Working with Large Datasets

Programming with Data

It takes a lot of time and effort to deliver data in a format that is ready for its end use. Let's use an example of an online gaming site that wants to post the high score for each of its games every month. In order to make this data available, the site's developers would need to set up a database to keep data on all of the scores. In addition, they would need a system to retrieve the top scores every month from that database and display it to the end users.

For the users of our hypothetical gaming site, getting this month's high scores is fairly straightforward. This is because finding out what the high scores are is a rather general use case. A lot of people will want that specific data in that specific form, so it makes sense to develop a system to deliver the monthly high scores.

Unlike the users of our hypothetical gaming site, data programmers have very specialized use cases for the data that they work with. A data journalist following politics may want to visualize trends in government spending over the last few years. A machine learning engineer working in the medical industry may want to develop an algorithm to predict a patient's likelihood of returning to the hospital after a visit. A statistician working for the board of education may want to investigate the correlation between attendance and test scores. In the gaming site example, a data analyst may want to investigate how the distribution of scores changes based on the time of the day.

A short side note on terminology
Data science as an all encompassing term can be a bit elusive. As it is such a new field, the definition of a data scientist can change depending on who you ask. To be more general, the term data programmer will be used in this book to refer to anyone who will find data wrangling useful in their work.

Drawing insight from data requires that all the information that is needed is in a format that you can work with. Organizations that produce data (for example, governments, schools, hospitals, and web applications) can't anticipate the exact information that any given data programmer might need for their work. There are too many possible scenarios to make it worthwhile. Data is therefore generally made available in its raw format. Sometimes this is enough to work with, but usually it is not. Here are some common reasons:

  • There may be extra steps involved in getting the data
  • The information needed may be spread across multiple sources
  • Datasets may be too large to work with in their original format
  • There may be far more fields or information in a particular dataset than needed
  • Datasets may have misspellings, missing fields, mixed formats, incorrect entries, outliers, and so on
  • Datasets may be structured or formatted in a way that is not compatible with a particular application

Due to this, it is often the responsibility of the data programmer to perform the following functions:

  • Discover and gather the data that is needed (getting data)
  • Merge data from different sources if necessary (merging data)
  • Fix flaws in the data entries (cleaning data)
  • Extract the necessary data and put it in the proper structure (shaping data)
  • Store it in the proper format for further use (storing data)

This perspective helps give some context to the relevance and importance of data wrangling. Data wrangling is sometimes seen as the grunt work of the data programmer, but it is nevertheless an integral part of drawing insights from data. This book will guide you through the various skill sets, most common tools, and best practices for data wrangling. In the following section, I will break down the tasks involved in data wrangling and provide a broad overview of the rest of the book. I will discuss the following steps in detail and provide some examples:

  • Getting data
  • Cleaning data
  • Merging and shaping data
  • Storing data

Following the high-level overview, I will briefly discuss Python and R, the tools used in this book to conduct data wrangling. 

You have been reading a chapter from
Practical Data Wrangling
Published in: Nov 2017
Publisher: Packt
ISBN-13: 9781787286139
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image