Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
PostgreSQL 16 Administration Cookbook

You're reading from   PostgreSQL 16 Administration Cookbook Solve real-world Database Administration challenges with 180+ practical recipes and best practices

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781835460580
Length 636 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (5):
Arrow left icon
Boriss Mejías Boriss Mejías
Author Profile Icon Boriss Mejías
Boriss Mejías
Jimmy Angelakos Jimmy Angelakos
Author Profile Icon Jimmy Angelakos
Jimmy Angelakos
Simon Riggs Simon Riggs
Author Profile Icon Simon Riggs
Simon Riggs
Gianni Ciolli Gianni Ciolli
Author Profile Icon Gianni Ciolli
Gianni Ciolli
Vibhor Kumar Vibhor Kumar
Author Profile Icon Vibhor Kumar
Vibhor Kumar
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. First Steps 2. Exploring the Database FREE CHAPTER 3. Server Configuration 4. Server Control 5. Tables and Data 6. Security 7. Database Administration 8. Monitoring and Diagnosis 9. Regular Maintenance 10. Performance and Concurrency 11. Backup and Recovery 12. Replication and Upgrades 13. Other Books You May Enjoy
14. Index

Avoiding auto-freezing

In the life cycle of a row, there are two routes that a row can take in PostgreSQL – a row version dies and needs to be removed by VACUUM, or a row version gets old enough and needs to be frozen, a task that is also performed by the VACUUM process. The removal of dead rows is easy to understand, while the second seems strange and surprising because many PostgreSQL users will not be familiar with the concept of freezing. Freezing is necessary for the proper operation of PostgreSQL’s Multiversion Concurrency Control (MVCC) for the following reason.

PostgreSQL uses internal transaction identifiers that are 4 bytes long, so we only have 232 transaction IDs (about 4 billion). PostgreSQL starts again from the beginning when that wraps around, circularly allocating new identifiers. The reason we do this is that moving to an 8-byte identifier has various other negative effects and costs that we would rather not pay for, so we keep the 4-byte transaction...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image