Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Node.js Design Patterns

You're reading from   Node.js Design Patterns Design and implement production-grade Node.js applications using proven patterns and techniques

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781839214110
Length 664 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Luciano Mammino Luciano Mammino
Author Profile Icon Luciano Mammino
Luciano Mammino
Mario Casciaro Mario Casciaro
Author Profile Icon Mario Casciaro
Mario Casciaro
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. The Node.js Platform 2. The Module System FREE CHAPTER 3. Callbacks and Events 4. Asynchronous Control Flow Patterns with Callbacks 5. Asynchronous Control Flow Patterns with Promises and Async/Await 6. Coding with Streams 7. Creational Design Patterns 8. Structural Design Patterns 9. Behavioral Design Patterns 10. Universal JavaScript for Web Applications 11. Advanced Recipes 12. Scalability and Architectural Patterns 13. Messaging and Integration Patterns 14. Other Books You May Enjoy
15. Index

Running CPU-bound tasks

The totalSales() API that we implemented in the Asynchronous request batching and caching section was (intentionally) expensive in terms of resources and took a few hundred milliseconds to run. Nonetheless, invoking the totalSales() function did not affect the ability of the application to process concurrent incoming requests. What we learned about the event loop in Chapter 1, The Node.js Platform, should explain this behavior: invoking an asynchronous operation always causes the stack to unwind back to the event loop, leaving it free to handle other requests.

But what happens when we run a synchronous task that takes a long time to complete and that never gives back the control to the event loop until it has finished? This kind of task is also known as CPU-bound, because its main characteristic is that it is heavy on CPU utilization rather than being heavy on I/O operations.

Let's work immediately on an example to see how these...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image