We explored in this chapter one of the major innovation in text analysis, word embeddings or word vectors. Word vectors are unique in being not only a way for us to represent our documents and our words but to also offer a new way of looking at our words. The success of Word2Vec led to an explosion in various word embedding methods, each with its own quirks, advantages, and disadvantages. We not only learned about the popular Word2Vec and Doc2Vec implementations but also five other word embedding methods – all of them are supported well in the Gensim eco-system making them easy to use.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine