Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Mastering Text Mining with R
Mastering Text Mining with R

Mastering Text Mining with R: Extract and recognize your text data

eBook
$24.99 $35.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Table of content icon View table of contents Preview book icon Preview Book

Mastering Text Mining with R

Chapter 1. Statistical Linguistics with R

Statistics plays an important role in the fields that deal with quantitative data. Computational linguistics is no exception. The quantitative investigation of linguistic data helps us understand the latent patterns that have helped phoneticians, psycholinguistics, linguistics, and many others to explore and understand language.

In this chapter, we will explain the basic terms associated with probability, used in computational linguistics. You will soon get to dive into linguistics and learn about language models and practical quantitative methods used in linguistics.

At the end of this chapter, we will extensively discuss some very useful and highly efficient packages in R, which we will use throughout this book, and by the time you finish the book, you should be able to pick appropriate R packages and functions for specific text-mining activities and be able to effectively use them for practical purposes.

In this chapter, we will cover the following topics:

  • Basic statistics and probability
  • Probabilistic linguistics
  • Language models
  • Quantitative methods in linguistics
  • R packages for text mining

Probability theory and basic statistics

The conceptual origin of statistics is perceived to be from probability theories. We all must have heard something like the probability of rain tomorrow is 50%. While this seems very quantitative and thus should be easily interpretable, it is not very clear what it means. It can be interpreted to mean that for all the days when weather conditions are the same as tomorrow, it will rain on half of those days.

Probability helps us calculate the extent to which something is likely to happen or the likelihood of an event.

Probability is useful in various fields, such as statistics, computer science, physics, finance, gambling, sports, medicine, and even in machine learning and artificial intelligence.

Probability space and event

Probability in mathematics is built around sets. Set theory is very useful in probability; it provides a language for expressing and working with events.

The sample space of an experiment is the set of all possible outcomes of the experiment; let's call it S. An event, let's call it A, is a subset of the sample space S, and we say that A occurred if the actual outcome is in A.

Let's take an example of picking a card from a standard deck of 52 cards. The sample space S is the set of all the cards. Let's us consider an event A where the card we pick is an ace. This is a subset of the sample space. So the probability P of picking an ace is:

Probability = (number of elements in the event) / (number of elements in the sample space).

Theorem of compound probabilities

This says that the probability of the intersection of two events A and B can be computed as the product of probability of A given that B has happened times the probability of B:

Theorem of compound probabilities

The law of total probability or law of alternatives can be formulated as follows:

Theorem of compound probabilities

Conditional probability

Probability is a way of expressing uncertainties about events. Whenever we observe new evidence or obtain data, we acquire information that may affect our uncertainties. Conditional probability is the concept that tells us how to express the probability which is affected by the newly acquired information. Conditional probability handles situations where you have some additional knowledge about the outcome of a trial or experiment.

Let's consider an event R, It will rain today, before looking at the sky. The probability P(R) will increase when we look at the sky and see dark clouds. So the new probability is P (R|C) where C is the event of dark clouds.

If A and B are events with P (B) > 0,then the conditional probability of A given B, denoted by P(A|B), is defined as:

Conditional probability

Let us consider an example and try to perform the same using R. We are rolling two dice and the objective is to find the probability of the sum of the outcomes being greater than or equal to 8, given that the first dice has resulted in 3:

library(prob)
S <- rolldie(2, makespace = TRUE)
A <- subset(S, X1 + X2 >= 8)
B <- subset(S, X1 == 3) #Given
Prob(A, given = B) 

Bayes' formula for conditional probability

Bayes' formula gives us a way to test a hypothesis using conditional probabilities. A hypothesis is a suggested explanation for a specific outcome. If we see that a probability P (A | B) is high, we might hypothesize that event B is a cause of the event A. We use Bayes' formula when we know conditional probabilities of the form P (B | A) and want a conditional probability of the form P (A | B):

Bayes' formula for conditional probability

Independent events

Two events, A and B, in the same sample space are independent if P (AB) = P (A) P (B).This formula gives us a new and simpler way to characterize independent events. Two events, A and B, are independent if the probability of both events happening together is equal to the product of the probabilities of the two events.

Random variables

In probability, a random variable is a rule or function that assigns a number to each element of a sample space. In other words, a random variable gives a number for each outcome of a random experiment. In statistics, we define random variables using the letter X. There are different types of random variable.

Discrete random variables

When we toss two coins, the number of heads we can get is 0, 1, or 2 .We can define X as the number of heads that I get during this experiment. These random variable values have a probability associated with them; these variables can be represented as discrete points on a number line so they are called discrete random variables.

Continuous random variables

Let's say that we have to look at the physics test scores of 100 class 10 students. The test scores will fall between 0% and 100%. The test scores of the students may vary, such as 95.5%, 88%, 97.2%, and so on. We cannot denote all the test scores using discrete numbers when all values in an interval are possible. This is called a continuous random variable.

Probability frequency function

Once we have a random variable, we can determine the probability that the random variable will have a certain value; for example, for rolling two dice to get a sum of five outcomes, it can be (1,4) , (4,1) , (3,2) , or (2,3) so there are 4 out of 36 possible outcomes, so:

Probability frequency function

Probability distributions using R

R provides a wide range of probability functions. The generic prefixes for probability functions in R are r, d, p, q, for random number generators, probability density function, cumulative density function, and quantile function, respectively.

A comprehensive list of functions available is as follows:

Distribution

Functions

Beta

pbeta

qbeta

dbeta

rbeta

Binomial

pbinom

qbinom

dbinom

rbinom

Cauchy

pcauchy

qcauchy

dcauchy

rcauchy

Chi-Square

pchisq

qchisq

dchisq

rchisq

Exponential

pexp

qexp

dexp

rexp

F

pf

qf

df

rf

Gamma

pgamma

qgamma

dgamma

rgamma

Geometric

pgeom

qgeom

dgeom

rgeom

Hypergeometric

phyper

qhyper

dhyper

rhyper

Logistic

plogis

qlogis

dlogis

rlogis

Log Normal

plnorm

qlnorm

dlnorm

rlnorm

Negative Binomial

pnbinom

qnbinom

dnbinom

rnbinom

Normal

pnorm

qnorm

dnorm

rnorm

Poisson

ppois

qpois

dpois

rpois

Student t

pt

qt

dt

rt

Studentized Range

ptukey

qtukey

dtukey

rtukey

Uniform

punif

qunif

dunif

runif

Weibull

pweibull

qweibull

dweibull

rweibull

Wilcoxon Rank Sum Statistic

pwilcox

qwilcox

dwilcox

rwilcox

Wilcoxon Signed Rank Statistic

psignrank

qsignrank

dsignrank

rsignrank

Cumulative distribution function

This frequency function gives the probabilities for each value in the range of a random variable. For a given value R of the random variable, the cumulative distribution function gives the probability of the random variable taking on a value up to and including the given value R. When R is 3, there are three outcomes, (1, 1), (1, 2), and (2, 1), so:

Cumulative distribution function

The cumulative distribution function is also called the CDF, or probability distribution or distribution function. The stats package in R provides the function ecdf to compute the empirical cumulative distribution function and plot it using the object created. You can also plot the ecdf object using the ggplot2 package. Let's look at an example for the same:

x <- rnorm(1000, 99.2, 1.2)
y <- rnorm(10000, 97.3, 0.85)
z <- rnorm(10000, 98.1, 0.4)

# Create a chart with all 3 Conditional distribution plots
plot(ecdf(x), col=rgb(1,0,0), main=NA)
plot(ecdf(y), col=rgb(0,1,0), add=T)
plot(ecdf(z), col=rgb(0,0,1), add=T)

# Adding legend to the chart.
legend('right', c('x', 'y', 'z'), fill=c(rgb(1,0,0), rgb(0,1,0), rgb(0,0,1)))
Cumulative distribution function

Using the ggplot2 package, create the CDF plot with the ecdf function:

  # Load the required packages.
  library("reshape2","plyr","ggplot2")
  
  # transform the data.
  plot_data <- melt(data.frame(x, y, z))
  plot_data <- ddply(plot_data, .(variable), transform, cd=ecdf(value)(value))
  
  # Create the CDF using ggplot.
  cdf <- ggplot(plot_data, aes(x=value)) + stat_ecdf(aes(colour=variable))
  
  # Generate the Conditional distribution plot.
  cdf
Cumulative distribution function

Joint distribution

Two different random variables can be associated with the same sample space. When there are two random variables on the same sample space, we study their interaction using a joint distribution. Let's consider an example: we want to know the probability that the sum of the same dice rolled twice is 6, so S = 6, and that the lowest die is 3, so D = 3. We represent this as follows:

P{S = 6, D = 3}

P {S = 6} = (1, 5) (2, 4) (3, 3) (4, 2) (1, 5);

Of the five outcomes, only one has the lower number equal to 3 so the probability is:

Joint distribution

Binomial distribution

If there are only two outcomes to a trial, one with probability P and the other with probability 1 – P, often one outcome is called a success and the other a failure. When this is the case, P is used as the probability of success and the probability of failure is 1 – P. Such an experiment is called a Bernoulli trial or a binomial trial, because there are only two outcomes. The random variable associated with a Bernoulli trial is the Bernoulli random variable, with value 1 for a successful outcome and value 0 for failure.

Let's take an example of flipping a coin. It gives two outcomes, heads and tails. If we assign the value 1 to heads and 0 to tails, we have a Bernoulli random variable. Let's call this random variable R and since heads and tails are equally likely to occur:

P{R = 1} = 0.5 and P{R = 0} = 0.5

If we repeat a Bernoulli trial many times over, we get a new distribution, called a binomial distribution. So in order to compute the probability of k successes in n trials we can use the following formula:

Binomial distribution

Here:

  • n: Number of trials
  • P: Probability of success

Poisson distribution

The Poisson distribution applies when occurrences are independent, so that one occurrence neither diminishes nor increases the chance of another. The average frequency of occurrence for the time period is known. The probability of an occurrence during a small time interval is proportional to the entire length of the time interval:

Poisson distribution

Here:

  • λ: Average rate of outcomes
  • Poisson distribution
  • t: Interval size

Counting occurrences

When we are putting together texts, we will not know the probability distribution of a particular topic. If we consider a corpus of country's economic strategy, written by various economists, it's difficult to understand the probability of what they are emphasizing more – is it infrastructure, manufacturing, banking, and so on – without counting the members associated. One thing to be aware of is no corpus will be balanced. We need to count the occurrences of relevant words in the dataset to get some statistical information. We need to know the frequency distribution of different words. Word frequencies refer to the number of word tokens that are instances of a word type. We can perform word counts over corpora with the R tau package.

Zipf's law

Zipf's law is an interesting phenomenon that can be applied universally in many contexts, such as social sciences, cognitive sciences, and linguistics. When we consider a variety of datasets, there will be an uneven distribution of words. Zipf's law says that the frequency of a word, f (w), appears as a nonlinearly decreasing function of the rank of the word, r (w), in a corpus. This law is a power law: the frequency is a function of the negative power of rank. C is a constant that is determined by the particulars of the corpus; it's the frequency of the most frequent word:

Zipf's law

Given a collection of words, we can estimate the frequency of each unique word, which is nothing but the number of times the word occurs in the collection.

If we sort the words in descending order of their frequency of occurrence in the collection, and compute their rank, the product of their frequency and associated rank reveals a very interesting pattern.

  • N: Sample size or corpus size
  • V: Vocabulary size, count of distinct type in the corpus
  • Vm: Count of hapax terms, types that occur just once in a corpus

Let us consider a small sample S: a a a a b b b c c d d:

  1. Here, N= 11, V = 4, Vm = 0.
  2. Load Brown and Dickens frequency data:
    library(zipfR)
    data(Dickens.spc)
    data(BrownVer.spc)
  3. Check sample size and vocabulary and hapax counts:
    N(BrownVer.spc)          # 166262
    V(BrownVer.spc)          # 10007
    Vm(BrownVer.spc,1)       # 3787
    N(Dickens.spc)           # 2817208
    V(Dickens.spc)           # 41116
    Vm(Dickens.spc,1)        # 14220
  4. Zipf rank-frequency plot:
    plot(log(BrownVer.spc$m),log(BrownVer.spc$Vm))
    Zipf's law
  5. Compute binomially interpolated growth curves:
    di.vgc <- vgc.interp(Dickens.spc,(1:100)*28170)
    br.vgc <- vgc.interp(BrownVer.spc,(1:100)*1662)
  6. Plot vocabulary growth:
    plot(di.vgc,br.vgc,legend=c("Dickens","Brown"))
    Zipf's law
  7. Compute Zipf-Mandelbrot model from Dickens data:
    zm <- lnre("zm",Dickens.spc)
    ## plot observed and expected spectrum
    zm.spc <- lnre.spc(zm,N(Dickens.spc))
    Zipf's law

Let there be a word w which has the rank r' in a document and the probability of this word to be at rank r' be defined as P(r'). The probability P(r') can be expressed as the function of frequency of occurrence of the words as follows:

P(r') = Freq(r')/N,

where N is the sample size and Freq(r') is the frequency of occurrence of r' in the corpus

Note

As per Zipf's law, r' * P(r') = K, where K is a constant. The value of K is assumed to be close to 0.1.

Heaps' law

Heaps' law is also known as Herdan's Law. This law was discovered by Gustav Herdan, but the law is sometimes attributed to Harold Heaps. It is an empirical law which describes the relationship between type and tokens in linguistics. In simpler terms, Heaps' law defines the relation between the count of distinct words in document and the length of the specified document.

The relation can be expressed as:

Vr(n) = C* nb

Here, Vr is the count of distinct words in document and n is the size of the document. C and b are parameters defined empirically.

The similarity between Heaps' Law and Zipf's law is attributed to the fact that type-token relation is derivable from type distribution:

library(tm)
data("acq")
termdoc <- DocumentTermMatrix(acq)
Heaps_plot(termdoc)
Heaps' law

Lexical richness

Quantitative analysis of lexical structure is relevant for many activities such as stylometrics, applied linguistics, computational linguistics, natural language processing, lexicology, and so on. There are different approaches to capture vocabulary richness. It can be measured by means of measure or of an index. It can be captured by means of curve, as in the case of Herdan's and Zipf's law. If we consider the empirical distribution of word types, we can derive the distribution based on combinatorial considerations or we can use consider the stochastic processes to derive the distribution.

In applied linguistics, lexical richness explains the qualified proficiency of the author in a document, in terms of language variation, width, length, and productive knowledge of vocabulary. Let's attempt to understand the multiple measures that explain the lexical richness of a text.

Note

The languageR package in R comes with functions to compare lexical richness between corpora.

Lexical variation

Lexical variation in language is considered to be multi-dimensional; all languages go through variations based on time and social settings. There are different lexical variants to the same word in same language. For instance, in the US, what you call a cookie is a biscuit in the UK. Most of us are aware of language variation based on geographical differences, such as elevator and lift, pavement and sidewalk, pants and trousers. Socio-cultural changes lead to the phenomenon of borrowing in cases of dialect contacts. Semantic shifts and broadening give the words different meanings in different contexts. While by semantic broadening, the words take a more generalized meaning, by semantic narrowing, it is bound to take more restricted meaning. Broadly, lexical variations are of two categories: conceptual variation and contextual variation, which is further categorized to formal variation, semasiologically variation, and onomasiolofical variation.

Note

The koRpus package in R provides functions to estimate lexical variation.

Lexical density

Lexical density is defined as the ratio of content to functional or grammatical words in a sentence. It is used in discourse analysis for texts. In simpler terms, lexical density explains the readability of a text.

Lexical density is determined as follows:

              Ld  = (Nlex / N) * 100

Here:

  • Ld = Lexical density
  • Nlex = Count of lexical tokens
  • N = Count of all tokens

Lexical originality

Lexical originality measures the unique wording of a specific writer. It is defined as the number of unique word types*100/total lexical words.

Lexical sophistication

Lexical sophistication measures the percentage of advanced words in text. It is defined as the (number of advanced lexemes)*100 /(total number of lexical words).

For identifying single word lexemes, we can use the technique of stemming.

Language models

In terms of natural language processing, language models generate output strings that help to assess the likelihood of a bunch of strings to be a sentence in a specific language. If we discard the sequence of words in all sentences of a text corpus and basically treat it like a bag of words, then the efficiency of different language models can be estimated by how accurately a model restored the order of strings in sentences. Which sentence is more likely: I am learning text mining or I text mining learning am? Which word is more likely to follow I am…?

Language models are widely used in machine translation, spelling correction, speech recognition, text summarization, questionnaires, and so on.

Basically, a language model assigns the probability of a sentence being in a correct order. The probability is assigned over the sequence of terms by using conditional probability. Let us define a simple language modeling problem. Assume a bag of words contains words W1, W2,………………….,Wn.. A language model can be defined to compute any of the following:

  • Estimate the probability of a sentence S1: P (S1) = P (W1, W2, W3, W4, W5)
  • Estimate the probability of the next word in a sentence or set of strings:
    P (W3|W2, W1)

How to compute the probability? We will use chain law, by decomposing the sentence probability as a product of smaller string probabilities:

            P(W1W2W3W4) = P(W1)P(W2|W1)P(W3|W1W2)P(W4|W1W2W3)

N-gram models

N-grams are important for a wide range of applications. They can be used to build simple language models. Let's consider a text T with W tokens. Let SW be a sliding window. If the sliding window consists of one cell N-gram models then the collection of strings is called a unigram; if the sliding window consists of two cells, the output is N-gram models , this is called a bigram .Using conditional probability, we can define the probability of a word having seen the previous word; this is known as bigram probability. So the conditional probability of an element, , given the previous element, N-gram models is:

N-gram models

Extending the sliding window, we can generalize that n-gram probability as the conditional probability of an element given previous n-1 element:

N-gram models

The most common bigrams in any corpus are not very interesting, such as on the, can be, in it, it is. In order to get more meaningful bigrams, we can run the corpus through a part-of-speech (POS) tagger. This would filter the bigrams to more content-related pairs such as infrastructure development, agricultural subsidies, banking rates; this can be one way of filtering less meaningful bigrams.

A better way to approach this problem is to take into account collocations; a collocation is the string created when two or more words co-occur in a language more frequently. One way to do this over a corpus is pointwise mutual information (PMI).The concept behind PMI is for two words, A and B, we would like to know how much one word tells us about the other. For example, given an occurrence of A, a, and an occurrence of B, b, how much does their joint probability differ from the expected value of assuming that they are independent. This can be expressed as follows:

N-gram models
  • Unigram model:
                  Punigram(W1W2W3W4) = P(W1)P(W2)P(W3)P(W4)
  • Bigram model:
                  Pbu(W1W2W3W4) = P(W1)P(W2|W1)P(W3|W2)P(W4|W3)
                  P(w1w2…wn ) = P(wi | w1w2…wi"1)

Applying the chain rule on n contexts can be difficult to estimate; Markov assumption is applied to handle such situations.

Markov assumption

If predicting that a current string is independent of some word string in the past, we can drop that string to simplify the probability. Say the history consists of three words, Wi, Wi-1, Wi-2, instead of estimating the probability P(Wi+1) using P(Wi,i-1,i-2) , we can directly apply P(Wi+1 | Wi, Wi-1).

Hidden Markov models

Markov chains are used to study systems that are subject to random influences. Markov chains model systems that move from one state to another in steps governed by probabilities. The same set of outcomes in a sequence of trials is called states. Knowing the probabilities of states is called state distribution. The state distribution in which the system starts is the initial state distribution. The probability of going from one state to another is called transition probability. A Markov chain consists of a collection of states along with transition probabilities. The study of Markov chains is useful to understand the long-term behavior of a system. Each arc associates to certain probability value and all arcs coming out of each node must have exhibit a probability distribution. In simple terms, there is a probability associated to every transition in states:

.

Hidden Markov models

Hidden Markov models are non-deterministic Markov chains. They are an extension of Markov models in which output symbol is not the same as state. We will discuss this topic in detail in later chapters.

Quantitative methods in linguistics

Text can be grammatically complex, to analyze text its difficult consider all the complexity. In order to get meaning out of text or a document, we need a measure. We need to extract quantitative data by processing the text with various transformation methods. Each method discards unnecessary, ancillary information. There are various methods, packages, APIs, and software that can transform text into quantitative data, but before using any of them, we need to analyze and test our documents with different approaches.

The first step is we assume a document is a collection of words where order doesn't influence our analysis. We consider unigrams; for some analysis, bigrams and trigrams can also be used to provide more meaningful results. Next, we simplify the vocabulary by passing the document through a stemming process; here, we reduce the words to their root. A better/advanced approach would be lemmatization. Then we discard punctuation, capitalization, stop words, and very common words. Now we use this text for quantitative analysis. Let me list a few quantity methods and explain why they are used.

Document term matrix

In order to find the similarity between documents in a corpus, we can use a document term matrix. In a document term matrix, rows represent documents, columns represent terms, and each cell value is the term frequency count for a document. It is one of the useful ways of modeling documents. Here is an example:

  • Document-1: Ice creams in summer are awesome
  • Document-2: I love ice creams in summer
  • Document-3: Ice creams are awesome all season
     

    icecream

    summer

    love

    awesome

    season

    Doc1

    1

    1

    0

    1

    0

    Doc2

    1

    1

    1

    0

    0

    Doc3

    1

    0

    0

    1

    1

If we visualize this in a term-document space, each document becomes a point in it. We can then tell how similar two documents are by calculating the distance between the two points using Euclidean distance.

When a term occurs in a lot of documents, it tends to make notably less difference the terms that occur few times. For example, India Today has more to do with India than today. These frequently occurring terms can affect the similarity comparison. The term space will be biased towards these terms. In order to address this problem, we use inverse document frequency.

Inverse document frequency

A commonly used measure of a term's selective potential is calculated by its inverse document frequency (IDF). The formula for IDF is calculated as follows:

Inverse document frequency

Here, N is the number of documents in the corpus and df(term) is the number of documents in which the term appears.

The weight of a term's appearance in a document is calculated by combining the term frequency (TF) in the document with its IDF:

Inverse document frequency

This term–document score is known as TF*IDF, and is widely used. This is used by a lot of search platforms/APIs, such as SOLR, Elasticsearch, and lucene. TF*IDF scores are then pre-computed and stored, so that similarity comparison can be done by just a dot product.

When we look at the entries in this term–document matrix, most of the cells will be empty because only a few terms appear in each document; storing all the empty cells requires a lot of memory and it contributes no value to the dot product (similarity computation). Various sparse matrix representations are possible and these are used to for optimized query processing.

Words similarity and edit-distance functions

In order to find a similarity between words in case of fuzzy searches, we need to quantify the similarity between words; some quantitative methods used are explained below. Before going into it, let's install an R package, stringdist, which can be used to apply various algorithms mentioned above to calculate string similarity:

install.packages("stringdist")
library(stringdist)

One way of finding the similarity between two words is by edit distance. Edit distance refers to the number of operations required to transform one string into another.

Euclidean distance

Euclidean distance is the distance between two points in the term-document space; it can be calculated by using the formula for a two-dimensional space as follows:

Euclidean distance e <- sqrt((x1-x2)^2+(y1-y2)^2)

Here, (x1,y1) and (x2,y2) are the two points and e is the estimated Euclidean distance between them:

Euclidean distance

We can very easily convert the aforesaid formula into R code:

euclidean.dist <- function(x1, x2) sqrt(sum((x1 - x2) ^ 2))

Cosine similarity

Euclidean distance has its own pitfalls, documents with lots of terms are far from origin, we will find small documents relatively similar even if it's unrelated because of short distance.

To avoid length issues, we can use the angular distance and measure the similarity by the angle between the vectors; we measure the cosine of the angle. The larger the cosine value, the more similar the documents are. Since we use the cos function, this is also called cosine similarity:

Cosine similarity

The formula to calculate cosine between two points is as follows:

Cosine similarity

This kind of geometric modeling is also called vector space model:

# Create two random matrices matrixA and matrixB
ncol<-5
nrow<-5
matrixA<-matrix(runif(ncol*nrow), ncol=ncol) 
matrixB<-matrix(runif(ncol*nrow), ncol=ncol) 

# function for estimating cosine similarity in R: 
cosine_sim<-function(matrixA, matrixB){
  m=tcrossprod(matrixA, matrixB)
  c1=sqrt(apply(matrixA, 1, crossprod))
  c2=sqrt(apply(matrixB, 1, crossprod))
  m / outer(c1,c2)
}

# Estimate the cosine similarity between the two matrices initiated earlier
cosine_sim(matrixA,matrixB)

Alternately, cosine similarity can also be estimated by functions available in the packages lsa, proxy, and so on.

Levenshtein distance

The Levenshtein distance between two words, x and y, is the minimal number of insertions, deletions, and replacements needed for transforming word x into word y.

If we to convert abcd to abdc, we need to replace c with d and replace d with c so the distance is 2:

Library(stringdist)
stringdist('abcd', 'abdc', method='lv')
     [1] 2

Damerau-Levenshtein distance

The Damerau-Levenshtein distance is the minimal number of insertions, deletions, replacements, and adjacent transpositions needed for transforming word x into word y.

If we to convert abcd to abdc, we need to swap c and d so the distance is 1:

stringdist('abcd', 'abdc', method='dl')
      [1] 1

Hamming distance

The Hamming distance between two words is the number of positions at which the characters are different. It is the minimum number of substitutions required to change into word into another. In order to use the Hamming distance, the words must be of the same length.

If we to convert abcd to abdc, we need to substitute c with d and d with c so the distance is 2:

stringdist('abcd', 'abdc', method='hamming')
     [1] 2

Jaro-Winkler distance

The Jaro-Winkler distance measure is best suited for short strings such as name comparison or record linkage. It is designed to compare surnames and names. The higher the distance, the more similar the strings in comparison are.

In order to measure the Jaro distance, we need to perform the following two tasks:

  • Compute the number of matches
  • Compute the number of transpositions

The Winkler adjustment involves a final rescoring based on an exact match score for the initial characters of both words. It uses a constant scaling factor P:

stringdist('abcd', 'abdc' , method = 'jw' , p=0.1)
      [1] 0.06666667

Measuring readability of a text

Readability is the ease with which a text can be read by a reader. The readability of a text depends on its content and the complexity of its vocabulary and syntax. There are a number of methods to measure the readability of a text. Most of them are based on correlation analysis, where researchers have selected a number of text properties (such as words per sentence, average number of syllables per word, and so on) and then asked test subjects to grade the readability of various texts on a scale. By looking at the text properties of these texts, it is possible to correlate how much "words per sentence" influences readability.

Note

The koRpus package in R provides a hyphen function to estimate the readability of a given text.

Gunning frog index

The Gunning fog index is one of the best-known methods that measure the level of reading difficulty of any document. The fog index level translates the number of years of education a reader needs in order to understand the given material. The ideal score is 7 or 8; anything above 12 is too hard for most people to read.

The Gunning fog index is calculated as shown in the following steps:

  1. Select all the sentences in a passage of approximately 100 words.
  2. We need to calculate the average sentence length by doing a simple math of dividing number of words by number of sentences.
  3. Count all the words with three or more syllables. Generally, words with more than three syllables are considered to be complex.
  4. Sum up the average sentence length and the percentage of complex words.
  5. Multiply the result by 0.4.

    The formula is as shown here:

Gunning frog index

R packages for text mining

There is a wide range of packages available in R for natural language processing. Some of them are as follows.

OpenNLP

OpenNLP is an R package which provides an interface, Apache OpenNLP, which is a machine-learning-based toolkit written in Java for natural language processing activities. Apache OpenNLP is widely used for most common tasks in NLP, such as tokenization, POS tagging, named entity recognition (NER), chunking, parsing, and so on. It provides wrappers for Maxent entropy models using the Maxent Java package.

It provides functions for sentence annotation, word annotation, POS tag annotation, and annotation parsing using the Apache OpenNLP chunking parser. The Maxent Chunk annotator function computes the chunk annotation using the Maxent chunker provided by OpenNLP.

The Maxent entity annotator function in R package utilizes the Apache OpenNLP Maxent name finder for entity annotation. Model files can be downloaded from http://opennlp.sourceforge.net/models-1.5/. These language models can be effectively used in R packages by installing the OpenNLPmodels.language package from the repository at http://datacube.wu.ac.at.

Rweka

The RWeka package in R provides an interface to Weka. Weka is an open source software developed by a machine learning group at the University of Wakaito, which provides a wide range of machine learning algorithms which can either be directly applied to a dataset or it can be called from a Java code. Different data-mining activities, such as data processing, supervised and unsupervised learning, association mining, and so on, can be performed using the RWeka package. For natural language processing, RWeka provides tokenization and stemming functions. RWeka packages provide an interface to Alphabetic, NGramTokenizers, and wordTokenizer functions, which can efficiently perform tokenization for contiguous alphabetic sequence, string-split to n-grams, or simple word tokenization, respectively.

RcmdrPlugin.temis

The RcmdrPlugin.temis package in R provides a graphical integrated text-mining solution. This package can be leveraged for many text-mining tasks, such as importing and cleaning a corpus, terms and documents count, term co-occurrences, correspondence analysis, and so on. Corpora can be imported from different sources and analysed using the importCorpusDlg function. The package provides flexible data source options to import corpora from different sources, such as text files, spreadsheet files, XML, HTML files, Alceste format and Twitter search. The Import function in this package processes the corpus and generates a term-document matrix. The package provides different functions to summarize and visualize the corpus statistics. Correspondence analysis and hierarchical clustering can be performed on the corpus. The corpusDissimilarity function helps analyse and create a cross-dissimilarity table between term-documents present in the corpus.

This package provides many functions to help the users explore the corpus. For example, frequentTerms to list the most frequent terms of a corpus, specificTerms to list terms most associated with each document, subsetCorpusByTermsDlg to create a subset of the corpus. Term frequency, term co-occurrence, term dictionary, temporal evolution of occurrences or term time series, term metadata variables, and corpus temporal evolution are among the other very useful functions available in this package for text mining.

tm

The tm package is a text-mining framework which provides some powerful functions which will aid in text-processing steps. It has methods for importing data, handling corpus, metadata management, creation of term document matrices, and preprocessing methods. For managing documents using the tm package, we create a corpus which is a collection of text documents. There are two types of implementation, volatile corpus (VCorpus) and permanent corpus (PCropus). VCorpus is completely held in memory and when the R object is destroyed the corpus is gone. PCropus is stored in the filesystem and is present even after the R object is destroyed; this corpus can be created by using the VCorpus and PCorpus functions respectively. This package provides a few predefined sources which can be used to import text, such as DirSource, VectorSource, or DataframeSource. The getSources method lists available sources, and users can create their own sources. The tm package ships with several reader options: readPlain, readPDF, and readDOC. We can execute the getReaders method for an up-to-date list of available readers. To write a corpus to the filesystem, we can use writeCorpus.

For inspecting a corpus, there are methods such as inspect and print. For transformation of text, such as stop-word removal, stemming, whitespace removal, and so on, we can use the tm_map, content_transformer, tolower, stopwords("english") functions. For metadata management, meta comes in handy. The tm package provides various quantitative function for text analysis, such as DocumentTermMatrix , findFreqTerms, findAssocs, and removeSparseTerms.

languageR

languageR provides datasets and functions for statistical analysis on text data. This package contains functions for vocabulary richness, vocabulary growth, frequency spectrum, also mixed-effects models and so on. There are simulation functions available: simple regression, quasi-F factor, and Latin-square designs. Apart from that, this package can also be used for correlation, collinearity diagnostic, diagnostic visualization of logistic models, and so on.

koRpus

The koRpus package is a versatile tool for text mining which implements many functions for text readability and lexical variation. Apart from that, it can also be used for basic level functions such as tokenization and POS tagging.

RKEA

The RKEA package provides an interface to KEA, which is a tool for keyword extraction from texts. RKEA requires a keyword extraction model, which can be created by manually indexing a small set of texts, using which it extracts keywords from the document.

maxent

The maxent package in R provides tools for low-memory implementation of multinomial logistic regression, which is also called the maximum entropy model. This package is quite helpful for classification processes involving sparse term-document matrices, and low memory consumption on huge datasets.

lsa

Truncated singular vector decomposition can help overcome the variability in a term-document matrix by deriving the latent features statistically. The lsa package in R provides an implementation of latent semantic analysis.

Summary

Text mining is an interdisciplinary field which involves modelling unstructured data to extract information and knowledge, leveraging numerous statistical, machine learning, and computational linguistic techniques. The text analysis process involves multiple steps, which we will describe in upcoming chapters with practical examples using R. Any data analysis process starts with a preliminary step that comprises data preprocessing and cleansing, and exploratory analysis of the data. In this chapter, we focused on familiarizing you with the important NLP terminologies that will be frequently used throughout this book; this chapter can also act as a quick reference to the NLP packages in R and their widespread utility in different text-mining tasks. The next chapter deals with basic to advanced-level text-processing techniques to empower you with tools and techniques to process unstructured data efficiently.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Develop all the relevant skills for building text-mining apps with R with this easy-to-follow guide
  • Gain in-depth understanding of the text mining process with lucid implementation in the R language
  • Example-rich guide that lets you gain high-quality information from text data

Description

Text Mining (or text data mining or text analytics) is the process of extracting useful and high-quality information from text by devising patterns and trends. R provides an extensive ecosystem to mine text through its many frameworks and packages. Starting with basic information about the statistics concepts used in text mining, this book will teach you how to access, cleanse, and process text using the R language and will equip you with the tools and the associated knowledge about different tagging, chunking, and entailment approaches and their usage in natural language processing. Moving on, this book will teach you different dimensionality reduction techniques and their implementation in R. Next, we will cover pattern recognition in text data utilizing classification mechanisms, perform entity recognition, and develop an ontology learning framework. By the end of the book, you will develop a practical application from the concepts learned, and will understand how text mining can be leveraged to analyze the massively available data on social media.

Who is this book for?

If you are an R programmer, analyst, or data scientist who wants to gain experience in performing text data mining and analytics with R, then this book is for you. Exposure to working with statistical methods and language processing would be helpful.

What you will learn

  • Get acquainted with some of the highly efficient R packages such as OpenNLP and RWeka to perform various steps in the text mining process
  • Access and manipulate data from different sources such as JSON and HTTP
  • Process text using regular expressions
  • Get to know the different approaches of tagging texts, such as POS tagging, to get started with text analysis
  • Explore different dimensionality reduction techniques, such as Principal Component Analysis (PCA), and understand its implementation in R
  • Discover the underlying themes or topics that are present in an unstructured collection of documents, using common topic models such as Latent Dirichlet Allocation (LDA)
  • Build a baseline sentence completing application
  • Perform entity extraction and named entity recognition using R
Estimated delivery fee Deliver to Russia

Economy delivery 10 - 13 business days

$6.95

Premium delivery 6 - 9 business days

$21.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 28, 2016
Length: 258 pages
Edition : 1st
Language : English
ISBN-13 : 9781783551811
Category :
Languages :
Concepts :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Estimated delivery fee Deliver to Russia

Economy delivery 10 - 13 business days

$6.95

Premium delivery 6 - 9 business days

$21.95
(Includes tracking information)

Product Details

Publication date : Dec 28, 2016
Length: 258 pages
Edition : 1st
Language : English
ISBN-13 : 9781783551811
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 172.97
R: Recipes for Analysis, Visualization and Machine Learning
$89.99
Learning Bayesian Models with R
$38.99
Mastering Text Mining with R
$43.99
Total $ 172.97 Stars icon

Table of Contents

8 Chapters
1. Statistical Linguistics with R Chevron down icon Chevron up icon
2. Processing Text Chevron down icon Chevron up icon
3. Categorizing and Tagging Text Chevron down icon Chevron up icon
4. Dimensionality Reduction Chevron down icon Chevron up icon
5. Text Summarization and Clustering Chevron down icon Chevron up icon
6. Text Classification Chevron down icon Chevron up icon
7. Entity Recognition Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.4
(11 Ratings)
5 star 9.1%
4 star 9.1%
3 star 18.2%
2 star 36.4%
1 star 27.3%
Filter icon Filter
Top Reviews

Filter reviews by




Akhilesh Jan 13, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Nice explanation of complex concepts in simple language , with great flow . Its a good read for beginners and intermediate readers in text mining.
Amazon Verified review Amazon
ajitB Feb 15, 2018
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Great compendium of state-of-the-art algos for text mining!
Amazon Verified review Amazon
Dr. S. B. Bhattacharyya Jul 18, 2018
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
Far too many typographical errors. Examples just satisfactory.
Amazon Verified review Amazon
Raman Kumar Dec 02, 2018
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
Good book, although if you are a beginner in NLP, dont go for it, it wont make much sense. If you are good in statiatics atleast basics this books will he helpful for some of the approaches.
Amazon Verified review Amazon
Chris May 26, 2017
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
Barely found this book is useful.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela