In financial portfolios, the returns on their constituent assets depend on a number of factors, such as macroeconomic and microeconomical conditions, and various financial variables. As the number of factors increases, so does the complexity involved in modeling portfolio behavior. Given that computing resources are finite, coupled with time constraints, performing an extra computation for a new factor only increases the bottleneck on portfolio modeling calculations. A linear technique for dimensionality reduction is Principal Component Analysis (PCA). As its name suggests, PCA breaks down the movement of portfolio asset prices into its principal components, or common factors, for further statistical analysis. Common factors that don't explain much of the movement of the portfolio assets receive less weighting in their factors and...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand