Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Machine Learning with scikit-learn

You're reading from   Mastering Machine Learning with scikit-learn Apply effective learning algorithms to real-world problems using scikit-learn

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher
ISBN-13 9781788299879
Length 254 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Gavin Hackeling Gavin Hackeling
Author Profile Icon Gavin Hackeling
Gavin Hackeling
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. The Fundamentals of Machine Learning FREE CHAPTER 2. Simple Linear Regression 3. Classification and Regression with k-Nearest Neighbors 4. Feature Extraction 5. From Simple Linear Regression to Multiple Linear Regression 6. From Linear Regression to Logistic Regression 7. Naive Bayes 8. Nonlinear Classification and Regression with Decision Trees 9. From Decision Trees to Random Forests and Other Ensemble Methods 10. The Perceptron 11. From the Perceptron to Support Vector Machines 12. From the Perceptron to Artificial Neural Networks 13. K-means 14. Dimensionality Reduction with Principal Component Analysis

Training data, testing data, and validation data

As mentioned previously, a training set is a collection of observations. These observations comprise the experience that the algorithm uses to learn. In supervised learning problems, each observation consists of an observed response variable and features of one or more observed explanatory variables. The test set is a similar collection of observations. The test set is used to evaluate the performance of the model using some performance metric. It is important that no observations from the training set are included in the test set. If the test set does contain examples from the training set, it will be difficult to assess whether the algorithm has learned to generalize from the training set or has simply memorized it. A program that generalizes well will be able to effectively perform a task with new data. In contrast, a program that memorizes the training data by learning an overly-complex model could predict the values of the response variable for the training set accurately, but will fail to predict the value of the response variable for new examples. Memorizing the training set is called overfitting. A program that memorizes its observations may not perform its task well, as it could memorize relations and structure that are coincidental in the training data. Balancing generalization and memorization is a problem common to many machine learning algorithms. In later chapters we will discuss regularization, which can be applied to many models to reduce over-fitting.

In addition to the training and test data, a third set of observations, called a validation or hold-out set, is sometimes required. The validation set is used to tune variables called hyperparameters that control how the algorithm learns from the training data. The program is still evaluated on the test set to provide an estimate of its performance in the real world. The validation set should not be used to estimate real-world performance because the program has been tuned to learn from the training data in a way that optimizes its score on the validation data; the program will not have this advantage in the real world.

It is common to partition a single set of supervised observations into training, validation, and test sets. There are no requirements for the sizes of the partitions, and they may vary according to the amount of data available. It is common to allocate between fifty and seventy-five percent of the data to the training set, ten to twenty-five percent of the data to the test set, and the remainder to the validation set.

Some training sets may contain only a few hundred observations; others may include millions. Inexpensive storage, increased network connectivity, and the ubiquity of sensor-packed smartphones have contributed to the contemporary state of big data, or training sets with millions or billions of examples. While this book will not work with datasets that require parallel processing on tens or hundreds of computers, the predictive power of many machine learning algorithms improves as the amount of training data increases. However, machine learning algorithms also follow the maxim "garbage in, garbage out". A student who studies for a test by reading a large, confusing textbook that contains many errors likely will not score better than a student who reads a short but well-written textbook. Similarly, an algorithm trained on a large collection of noisy, irrelevant, or incorrectly-labeled data will not perform better than an algorithm trained on a smaller set of data that is more representative of the problem in the real-world.

Many supervised training sets are prepared manually or by semi-automated processes. Creating a large collection of supervised data can be costly in some domains. Fortunately, several datasets are bundled with scikit-learn, allowing developers to focus on experimenting with models instead. During development, and particularly when training data is scarce, a practice called cross-validation can be used to train and validate a model on the same data. In cross-validation, the training data is partitioned. The model is trained using all but one of the partitions, and tested on the remaining partition. The partitions are then rotated several times so that the model is trained and evaluated on all of the data. The mean of the model's scores on each of the partitions is a better estimate of performance in the real world than an evaluation using a single training/testing split. The following diagram depicts cross validation with five partitions, or folds.

The original dataset is partitioned into five subsets of equal size labeled A through E. Initially the model is trained on partitions B through E, and tested on partition A. In the next iteration, the model is trained on partitions A, C, D, and E, and tested on partition B. The partitions are rotated until models have been trained and tested on all of the partitions. Cross-validation provides a more accurate estimate of the model's performance than testing a single partition of the data.

You have been reading a chapter from
Mastering Machine Learning with scikit-learn - Second Edition
Published in: Jul 2017
Publisher:
ISBN-13: 9781788299879
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image