Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Mastering Java for Data Science
Mastering Java for Data Science

Mastering Java for Data Science: Analytics and more for production-ready applications

eBook
$9.99 $43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Mastering Java for Data Science

Data Processing Toolbox

In the previous chapter, we discussed the best practices for approaching data science problems. We looked at CRISP-DM, which is the methodology for dealing with data mining projects, and one of the first steps there is data preprocessing. In this chapter, we will take a closer look at how to do this in Java.

Specifically, we will cover the following topics:

  • Standard Java library
  • Extensions to the standard library
  • Reading data from different sources such as text, HTML, JSON, and databases
  • DataFrames for manipulating tabular data

In the end, we will put everything together to prepare the data for the search engine.

By the end of this chapter, you will be able to process data such that it can be used for machine learning and further analysis.

Standard Java library

The standard Java library is very rich and offers a lot of tools for data manipulation, including:

  • Collections for organizing data in memory
  • I/O for reading and writing data
  • Streaming APIs for making data transformations easy

In this chapter, we will look at all these tools in detail. 

Collections

Data is the most important part of data science. When dealing with data, it needs to be efficiently stored and processed, and for this we use data structures. A data structure describes a way to store data efficiently to solve a specific problem, and the Java Collection API is the standard Java API for data structures. This API offers a wide variety of implementations that are useful in practical data science applications.

We will not describe...

Extensions to the standard library

The standard Java library is quite powerful, but some things take a long time to write using it or they are simply missing. There are a number of extensions to the standard library, and the most prominent libraries are Apache Commons (a collection of libraries) and Google Guava. They make it easier to use the standard API or extend it, for example, by adding new collections or implementations.

To begin with, we will briefly go over the most relevant parts of these libraries, and later on we will see how they are used in practice.

Apache Commons

Apache Commons is a collection of open source libraries for Java, with the goal of creating reusable Java components. There are quite a few of them, including Apache Commons Lang, Apache...

Accessing data

By now we already have spent a lot of time describing how to read and write data. But there is much more to that: data often comes in different formats such as CSV, HTML, or JSON or it can be stored in a database. Knowing how to access and process this data is important for Data Science and now we will describe in detail how to do it for the most common data formats and sources.

Text data and CSV

We already have spoken about reading text data in great detail, and it can be done, for example, using the Files helper class from the NIO API or IOUtils from Commons IO.

CSV (Comma Separated Values) is a common way to organize tabular data in plain text files. While it is possible to parse CSV files by hand, there are some corner cases, which make it a bit...

Search engine - preparing data

In the first chapter, we introduced the running example, building a search engine. A search engine is a program that, given a query from the user, returns results ordered by relevance with respect to the query. In this chapter, we will perform the first steps--obtaining and processing data.

Suppose we are working on a web portal where users generate a lot of content, but they have trouble finding what other people have created. To overcome this problem, we propose to build a search engine, and product management has identified the typical queries that the users will put in.

For example, "Chinese food", "homemade pizza", and "how to learn programming" are typical queries from this list.

Now we need to collect the data. Luckily for us, there are already search engines on the Internet that can take in a query and return a list of URLs they consider relevant...

Standard Java library


The standard Java library is very rich and offers a lot of tools for data manipulation, including:

  • Collections for organizing data in memory
  • I/O for reading and writing data
  • Streaming APIs for making data transformations easy

In this chapter, we will look at all these tools in detail. 

Collections

Data is the most important part of data science. When dealing with data, it needs to be efficiently stored and processed, and for this we use data structures. A data structure describes a way to store data efficiently to solve a specific problem, and the Java Collection API is the standard Java API for data structures. This API offers a wide variety of implementations that are useful in practical data science applications.

We will not describe the collection API in full detail, but concentrate on the most useful and important ones--list, set, and map interfaces.

Lists are collections where each element can be accessed by its index. The g0-to implementation of the List interface is...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • An overview of modern Data Science and Machine Learning libraries available in Java
  • Coverage of a broad set of topics, going from the basics of Machine Learning to Deep Learning and Big Data frameworks.
  • Easy-to-follow illustrations and the running example of building a search engine.

Description

Java is the most popular programming language, according to the TIOBE index, and it is a typical choice for running production systems in many companies, both in the startup world and among large enterprises. Not surprisingly, it is also a common choice for creating data science applications: it is fast and has a great set of data processing tools, both built-in and external. What is more, choosing Java for data science allows you to easily integrate solutions with existing software, and bring data science into production with less effort. This book will teach you how to create data science applications with Java. First, we will revise the most important things when starting a data science application, and then brush up the basics of Java and machine learning before diving into more advanced topics. We start by going over the existing libraries for data processing and libraries with machine learning algorithms. After that, we cover topics such as classification and regression, dimensionality reduction and clustering, information retrieval and natural language processing, and deep learning and big data. Finally, we finish the book by talking about the ways to deploy the model and evaluate it in production settings.

Who is this book for?

This book is intended for software engineers who are comfortable with developing Java applications and are familiar with the basic concepts of data science. Additionally, it will also be useful for data scientists who do not yet know Java but want or need to learn it. If you are willing to build efficient data science applications and bring them in the enterprise environment without changing the existing stack, this book is for you!

What you will learn

  • Get a solid understanding of the data processing toolbox available in Java
  • Explore the data science ecosystem available in Java
  • Find out how to approach different machine learning problems with Java
  • Process unstructured information such as natural language text
  • or images
  • Create your own search engine
  • Get state-of-the-art performance with XGBoost
  • Learn how to build deep neural networks with DeepLearning4j
  • Build applications that scale and process large amounts of data
  • Deploy data science models to production and evaluate their
  • performance

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Apr 27, 2017
Length: 364 pages
Edition : 1st
Language : English
ISBN-13 : 9781785887390
Category :
Languages :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Apr 27, 2017
Length: 364 pages
Edition : 1st
Language : English
ISBN-13 : 9781785887390
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 170.97
Mastering Java for Data Science
$54.99
Mastering Java Machine Learning
$60.99
Java for Data Science
$54.99
Total $ 170.97 Stars icon
Banner background image

Table of Contents

10 Chapters
Data Science Using Java Chevron down icon Chevron up icon
Data Processing Toolbox Chevron down icon Chevron up icon
Exploratory Data Analysis Chevron down icon Chevron up icon
Supervised Learning - Classification and Regression Chevron down icon Chevron up icon
Unsupervised Learning - Clustering and Dimensionality Reduction Chevron down icon Chevron up icon
Working with Text - Natural Language Processing and Information Retrieval Chevron down icon Chevron up icon
Extreme Gradient Boosting Chevron down icon Chevron up icon
Deep Learning with DeepLearning4J Chevron down icon Chevron up icon
Scaling Data Science Chevron down icon Chevron up icon
Deploying Data Science Models Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(1 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Luca Massaron May 07, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Disclaimer: I am one of the technical reviewers of this book and an author of other data science and machine learning books.I strongly recommend reading this book in order to have a complete well-rounded overview of what it means doing data science in a company environment today. Commonly we think of data science as just the series of data preparation, experimentation and model development that can lead to a PoC, a Proof of Concept. Clearly, such can be easily done in Python or R in a successful way, but to discover soon after that the project has to be completely rewritten and rethought, if it has to go beyond the PoC status and become an integrated part of the software of company that sustains its competitive advantage in the market.Alexey clearly describes what Java can do for your data science projects, allowing you to go into production with your data science projects leveraging an existing Java ecosystem, which is common to so many small and large companies around the World. Most IT people consider Java as solid, mature, trusted, and reliable and it is (most likely) already been applied to existing ETL processing on the data you are using for your projects. Java can really be the key allowing your data science projects to go smoothly and successfully into production.Moreover, Alexey illustrates in the book many original interesting examples, uncommon to many other books around (no, really no Iris dataset here) and it presents so many fabulous tricks he clearly derived from his many years of practice in data science, that the book is a gem in itself. I found myself learning something new each chapter I read :-)
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.