Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Apex Programming

You're reading from   Mastering Apex Programming A developer's guide to learning advanced techniques and best practices for building robust Salesforce applications

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781800200920
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Paul Battisson Paul Battisson
Author Profile Icon Paul Battisson
Paul Battisson
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Section 1 – Triggers, Testing, and Security
2. Chapter 1: Common Apex Mistakes FREE CHAPTER 3. Chapter 2: Debugging Apex 4. Chapter 3: Triggers and Managing Trigger Execution 5. Chapter 4: Exceptions and Exception Handling 6. Chapter 5: Testing Apex Code 7. Chapter 6: Secure Apex Programming 8. Section 2 – Asynchronous Apex and Apex REST
9. Chapter 7: Utilizing Future Methods 10. Chapter 8: Working with Batch Apex 11. Chapter 9: Working with Queueable Apex 12. Chapter 10: Scheduling Apex Jobs 13. Chapter 11: Using Platform Events 14. Chapter 12: Apex REST and Custom Web Services 15. Section 3 – Apex Performance
16. Chapter 13: Performance and the Salesforce Governor Limits 17. Chapter 14: Performance Profiling 18. Chapter 15: Improving Apex Performance 19. Chapter 16: Performance and Application Architectures 20. Other Books You May Enjoy

Defining future methods

A future method must be defined as a static method with a void return type, as shown in the following code snippet. We annotate the method with the @future annotation to inform the compiler that this method should be called and placed onto the asynchronous processing queue:

@future
public static void myFutureMethod() {
	//method for execution
}

The method must be static so that it can be called and executed without the need for any state to be stored for it to execute.

We can also specify callout = true in the @future annotation to declare that the method can make callouts. By default, a standalone @future annotation is the same as @future(callout = false), barring our future method from making callouts to external systems. A method defined to make callouts would then be declared as follows:

@future(callout = true)
public static void myFutureCalloutMethod() {
	//make an API request
}

Our future method may have parameters in its definition, however...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image