Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Managing Data Science

You're reading from   Managing Data Science Effective strategies to manage data science projects and build a sustainable team

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781838826321
Length 290 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Kirill Dubovikov Kirill Dubovikov
Author Profile Icon Kirill Dubovikov
Kirill Dubovikov
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

1. Section 1: What is Data Science?
2. What You Can Do with Data Science FREE CHAPTER 3. Testing Your Models 4. Understanding AI 5. Section 2: Building and Sustaining a Team
6. An Ideal Data Science Team 7. Conducting Data Science Interviews 8. Building Your Data Science Team 9. Section 3: Managing Various Data Science Projects
10. Managing Innovation 11. Managing Data Science Projects 12. Common Pitfalls of Data Science Projects 13. Creating Products and Improving Reusability 14. Section 4: Creating a Development Infrastructure
15. Implementing ModelOps 16. Building Your Technology Stack 17. Conclusion 18. Other Books You May Enjoy

Introduction to deep learning

Before writing this section, I was thinking about the many ways we can draw a line between machine learning and deep learning. Each of them was contradictory in some way. In truth, you can't separate deep learning from machine learning because deep learning is a subfield of machine learning. Deep learning studies a specific set of models called neural networks. The first mentions of the mathematical foundations of neural networks date back to the 1980s, and the theory behind modern neural networks originated in 1958. Still, they failed to show good results until the 2010s. Why?

The answer is simple: hardware. Training big neural networks uses a great amount of computation power. But not any computation power will suffice. It turns out that neural networks do a lot of matrix operations under the hood. Strangely, rendering computer graphics also...

You have been reading a chapter from
Managing Data Science
Published in: Nov 2019
Publisher: Packt
ISBN-13: 9781838826321
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime