Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning in Biotechnology and Life Sciences

You're reading from   Machine Learning in Biotechnology and Life Sciences Build machine learning models using Python and deploy them on the cloud

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801811910
Length 408 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Saleh Alkhalifa Saleh Alkhalifa
Author Profile Icon Saleh Alkhalifa
Saleh Alkhalifa
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Getting Started with Data
2. Chapter 1: Introducing Machine Learning for Biotechnology FREE CHAPTER 3. Chapter 2: Introducing Python and the Command Line 4. Chapter 3: Getting Started with SQL and Relational Databases 5. Chapter 4: Visualizing Data with Python 6. Section 2: Developing and Training Models
7. Chapter 5: Understanding Machine Learning 8. Chapter 6: Unsupervised Machine Learning 9. Chapter 7: Supervised Machine Learning 10. Chapter 8: Understanding Deep Learning 11. Chapter 9: Natural Language Processing 12. Chapter 10: Exploring Time Series Analysis 13. Section 3: Deploying Models to Users
14. Chapter 11: Deploying Models with Flask Applications 15. Chapter 12: Deploying Applications to the Cloud 16. Other Books You May Enjoy

Tutorial – protein sequence classification via LSTMs using Keras and MLflow

Deep learning has gained a surge of popularity in recent years, prompting many scientists to turn to the field as a new means for solving and optimizing scientific problems. One of the most popular applications for deep learning within the biotechnology space involves protein sequence data. So far within this book, we have focused our efforts on developing predictive models when it comes to structured data. We will now turn our attention to data that's sequential in the sense that the elements within a sequence bear some relation to their previous element. Within this tutorial, we will attempt to develop a protein sequence classification model in which we will classify protein sequences based on their known family accession using the Pfam (https://pfam.xfam.org/) dataset.

Important note

Pfam dataset: Pfam: The protein families database in 2021 J. Mistry, S. Chuguransky, L. Williams, M. Qureshi...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime