Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Robotics using Python

You're reading from   Learning Robotics using Python Design, simulate, program, and prototype an autonomous mobile robot using ROS, OpenCV, PCL, and Python

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788623315
Length 280 pages
Edition 2nd Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Lentin Joseph Lentin Joseph
Author Profile Icon Lentin Joseph
Lentin Joseph
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with Robot Operating System FREE CHAPTER 2. Understanding the Basics of Differential Robots 3. Modeling the Differential Drive Robot 4. Simulating a Differential Drive Robot Using ROS 5. Designing ChefBot Hardware and Circuits 6. Interfacing Actuators and Sensors to the Robot Controller 7. Interfacing Vision Sensors with ROS 8. Building ChefBot Hardware and the Integration of Software 9. Designing a GUI for a Robot Using Qt and Python 10. Assessments 11. Other Books You May Enjoy

Block diagram of the robot

The robot's movement is controlled by two direct current (DC) gear motors using an encoder. The two motors are driven using a motor driver. The motor driver is interfaced with an embedded controller board, which will send commands to the motor driver to control the motor's movements. The encoder of the motor is interfaced with the controller board in order to count the number of rotations of the motor shaft. This data is used to compute the odometry data of the robot. There are ultrasonic sensors that are interfaced with the controller board in order to sense the obstacles and measure the distance from the obstacles. There is an IMU sensor to improve odometry calculation. The embedded controller board is interfaced with a PC, which does all the high-end processing in the robot. Vision and sound sensors are interfaced with the PC and Wi-Fi is...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image