Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Quantitative Finance with R

You're reading from   Learning Quantitative Finance with R Implement machine learning, time-series analysis, algorithmic trading and more

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781786462411
Length 284 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
PRASHANT VATS PRASHANT VATS
Author Profile Icon PRASHANT VATS
PRASHANT VATS
Dr. Param Jeet Dr. Param Jeet
Author Profile Icon Dr. Param Jeet
Dr. Param Jeet
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to R FREE CHAPTER 2. Statistical Modeling 3. Econometric and Wavelet Analysis 4. Time Series Modeling 5. Algorithmic Trading 6. Trading Using Machine Learning 7. Risk Management 8. Optimization 9. Derivative Pricing

Multicollinearity

If the predictor variables are correlated then we need to detect multicollinearity and treat it. Recognition of multicollinearity is crucial because two or more variables are correlated, which shows a strong dependence structure between those variables, and we are using correlated variables as independent variables, which end up having a double effect of these variables on the prediction because of the relation between them. If we treat the multicollinearity and consider only variables which are not correlated then we can avoid the problem of double impact.

We can find multicollinearity by executing the following code:

> vif(MultipleR.lm) 

This gives the multicollinearity table for the predictor variables:

Multicollinearity

Figure 3.8: VIF table for multiple regression model

Depending upon the values of VIF, we can drop the irrelevant variable.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image