Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Concurrency in Python

You're reading from   Learning Concurrency in Python Build highly efficient, robust, and concurrent applications

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787285378
Length 360 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Elliot Forbes Elliot Forbes
Author Profile Icon Elliot Forbes
Elliot Forbes
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Speed It Up! FREE CHAPTER 2. Parallelize It 3. Life of a Thread 4. Synchronization between Threads 5. Communication between Threads 6. Debug and Benchmark 7. Executors and Pools 8. Multiprocessing 9. Event-Driven Programming 10. Reactive Programming 11. Using the GPU 12. Choosing a Solution

Processes

Processes are very similar in nature to threads--they allow us to do pretty much everything a thread can do--but the one key advantage is that they are not bound to a singular CPU core. If we extend our office analogy further, this, essentially, means that if we had a four core CPU, then we can hire two dedicated sales team members and two workers, and all four of them would be able to execute work in parallel. Processes also happen to be capable of working on multiple things at one time much as our multithreaded single office worker.

These processes contain one main primary thread, but can spawn multiple sub-threads that each contain their own set of registers and a stack. They can become multithreaded should you wish. All processes provide every resource that the computer needs in order to execute a program.

In the following image, you'll see two side-by-side diagrams; both are examples of a process. You'll notice that the process on the left contains only one thread, otherwise known as the primary thread. The process on the right contains multiple threads, each with their own set of registers and stacks:

With processes, we can improve the speed of our programs in specific scenarios where our programs are CPU bound, and require more CPU horsepower. However, by spawning multiple processes, we face new challenges with regard to cross-process communication, and ensuring that we don't hamper performance by spending too much time on this inter-process communication (IPC).

Properties of processes

UNIX processes are created by the operating system, and typically contain the following:

  • Process ID, process group ID, user ID, and group ID
  • Environment
  • Working directory
  • Program instructions
  • Registers
  • Stack
  • Heap
  • File descriptors
  • Signal actions
  • Shared libraries
  • Inter-process communication tools (such as message queues, pipes, semaphores, or shared memory)

The advantages of processes are listed as follows:

  • Processes can make better use of multi-core processors
  • They are better than multiple threads at handling CPU-intensive tasks
  • We can sidestep the limitations of the GIL by spawning multiple processes
  • Crashing processes will not kill our entire program

Here are the disadvantages of processes:

  • No shared resources between processes--we have to implement some form of IPC
  • These require more memory
You have been reading a chapter from
Learning Concurrency in Python
Published in: Aug 2017
Publisher: Packt
ISBN-13: 9781787285378
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image