Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learn Docker - Fundamentals of Docker 18.x

You're reading from   Learn Docker - Fundamentals of Docker 18.x Everything you need to know about containerizing your applications and running them in production

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788997027
Length 398 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Dr. Gabriel N. Schenker Dr. Gabriel N. Schenker
Author Profile Icon Dr. Gabriel N. Schenker
Dr. Gabriel N. Schenker
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. What Are Containers and Why Should I Use Them? FREE CHAPTER 2. Setting up a Working Environment 3. Working with Containers 4. Creating and Managing Container Images 5. Data Volumes and System Management 6. Distributed Application Architecture 7. Single-Host Networking 8. Docker Compose 9. Orchestrators 10. Introduction to Docker Swarm 11. Zero Downtime Deployments and Secrets 12. Introduction to Kubernetes 13. Deploying, Updating, and Securing an Application with Kubernetes 14. Running a Containerized App in the Cloud 15. Assessment 16. Other Books You May Enjoy

Pods

Contrary to what is possible in a Docker Swarm, you cannot run containers directly in a Kubernetes cluster. In a Kubernetes cluster, you can only run pods. Pods are the atomic unit of deployment in Kubernetes. A pod is an abstraction of one or many co-located containers that share the same Kernel namespaces, such as the network namespace. No equivalent exists in the Docker SwarmKit. The fact that more than one container can be co-located and sharing the same network namespace is a very powerful concept. The following diagram illustrates two pods:

Kubernetes pods

In the preceding diagram, we have two pods, Pod 1 and Pod 2. The first pod contains two containers, while the second one only contains a single container. Each pod gets an IP address assigned by Kubernetes that is unique in the whole Kubernetes cluster. In our case, these are the IP addresses 10.0.12.3 and 10.0.12...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime