Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Recommendation Systems with Python

You're reading from   Hands-On Recommendation Systems with Python Start building powerful and personalized, recommendation engines with Python

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781788993753
Length 146 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rounak Banik Rounak Banik
Author Profile Icon Rounak Banik
Rounak Banik
Arrow right icon
View More author details
Toc

What this book covers

Chapter 1, Getting Started with Recommender Systems, introduces the recommendation problem and the models popularly used to solve it.

Chapter 2, Manipulating Data with the Pandas Library, illustrates various data wrangling techniques using the Pandas library.

Chapter 3, Building an IMDB Top 250 Clone with Pandas, walks through the process of building a top movies chart and a knowledge-based recommender that explicitly takes in user preferences.

Chapter 4, Building Content-Based Recommenders, describes the process of building models that make use of movie plot lines and other metadata to offer recommendations.

Chapter 5, Getting Started with Data Mining Techniques, covers various similarity scores, machine learning techniques, and evaluation metrics used to build and gauge performances of collaborative recommender models.

Chapter 6, Building Collaborative Filters, walks through the building of various collaborative filters that leverage user rating data to offer recommendations.

Chapter 7, Hybrid Recommenders, outlines various kinds of hybrid recommenders used in practice and walks you through the process of building a model that incorporates both content and collaborative-based filtering.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image