In the previous section, we learned the importance of reactivity and the fundamental principles of the reactive system, and we have seen why message-driven communication is an essential constituent of the reactive ecosystem. Nonetheless, to reinforce what we have learned, it is necessary to touch on real-world examples of its application. First of all, the reactive system is about architecture, and it may be applied anywhere. It may be used in simple websites, in large enterprise solutions, or even in fast-streaming or big-data systems. But let's start with the simplest—consider the example of a web store that we have already seen in the previous section. In this section, we will cover possible improvement and changes in the design that may help in achieving a reactive system. The following diagram helps us get acquainted with the overall architecture of the proposed solution:
The preceding diagram expands a list of useful practices that allow the reactive system to be achieved. Here, we improved our small web store by applying modern microservice patterns. In that case, we use an API Gateway pattern for achieving location transparency. It provides the identification of a specific resource with no knowledge about particular services that are responsible for handling requests.
In turn, the responsibility for keeping information about available services up to date is implemented using the service registry pattern and achieved with the support of the client-side discovery pattern. It should be noticed, that in the previous example, the service gateway and service registry are installed on the same machine, which may be useful in the case of a small distributed system. Additionally, the high responsiveness of the system is achieved by applying replication to the service. On the other hand, failure tolerance is attained by properly employed message-driven communication using Apache Kafka and the independent Payment Proxy Service (the point with Retry N times description in Diagram 1.4), which is responsible for redelivering payment in the case of unavailability of the external system. Also, we use database replication to stay resilient in the case of the outage of one of the replicas. To stay responsive, we return a response about an accepted order immediately and asynchronously process and send the user payment to the payments service. A final notification will be delivered later by one of the supported channels, for example, via email. Finally, that example depicts only one part of the system and in real deployments, the overall diagram may be broader and introduce much more specific techniques for achieving a reactive system.
To familiarize ourselves with API Gateway, Service Registry, and other patterns for constructing a distributed system, please click on the following link: http://microservices.io/patterns.
Along with the plain, small web store example that may seem really complex, let's consider another sophisticated area where a reactive system approach is appropriate. A more complex but exciting example is analytics. The term analytics means that the system that is able to handle a huge amount of data, process it in run-time, keep the user up to date with live statistics, and so on. Suppose we are designing a system for monitoring a telecommunication network based on cell site data. Due to the latest statistic report of the number of cell towers, in 2016 there were 308,334 active sites in the USA.
Unfortunately, we can just imagine the real load produced by that number of cell sites. However, we can agree that processing such a huge amount of data and providing real-time monitoring of the telecommunication network state, quality, and traffic is a challenge.
To design this system, we may follow one of the efficient architectural techniques called streaming. The following diagram depicts the abstract design of such a streaming system:
As may be noticed from this diagram, streaming architecture is about the construction of the flow of data processing and transformation. In general, such a system is characterized by low latency and high throughput. In turn, the ability to respond or simply deliver analyzed updates of the telecommunication network state is therefore crucial. Thus, to build such a highly-available system, we have to rely on fundamental principles, as mentioned in the Reactive Manifesto. For example, achieving resilience might be done by enabling backpressure support. Backpressure refers to a sophisticated mechanism of workload management between processing stages in such a way that ensures we do not overwhelm another. Efficient workload management may be achieved by using message-driven communication over a reliable message broker, which may persist messages internally and send messages on demand.
Moreover, by properly scaling each component of the system, we will be able to elastically expand or reduce system throughput.
Backpressure:Â https://www.reactivemanifesto.org/glossary#Back-Pressure.
In a real-world scenario, the stream of the data may be persisted databases processed in a batch, or partially processed in real-time by applying windowing or machine-learning techniques. Nonetheless, all fundamental principles offered by the Reactive Manifesto are valid here, regardless of the overall domain or business idea.Â
To summarize, there are a ton of different areas in which to apply the foundational principles of building a reactive system. The area of application of the reactive system is not limited to the previous examples and areas, since all of these principles may be applied to building almost any kind of distributed system oriented to giving users effective, interactive feedback.
Nonetheless, in the next section, we will cover the reasons for moving Spring Framework to reactivity.