Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On One-shot Learning with Python

You're reading from   Hands-On One-shot Learning with Python Learn to implement fast and accurate deep learning models with fewer training samples using PyTorch

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781838825461
Length 156 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ankush Garg Ankush Garg
Author Profile Icon Ankush Garg
Ankush Garg
Shruti Jadon Shruti Jadon
Author Profile Icon Shruti Jadon
Shruti Jadon
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Section 1: One-shot Learning Introduction
2. Introduction to One-shot Learning FREE CHAPTER 3. Section 2: Deep Learning Architectures
4. Metrics-Based Methods 5. Model-Based Methods 6. Optimization-Based Methods 7. Section 3: Other Methods and Conclusion
8. Generative Modeling-Based Methods 9. Conclusions and Other Approaches 10. Other Books You May Enjoy

Related fields

As we know, one-shot learning is a sub-field of ML. There are different relevant solutions that are very similar to the one-shot learning approach, yet slightly different in their solution approach. Such problems can be solved by using one-shot learning algorithms as well. Let's go through each of the relevant fields of ML and observe how similar they are to the one-shot learning problem:

  • Semi-supervised learning
  • Imbalanced learning
  • Meta-learning
  • Transfer learning

Semi-supervised learning

Suppose we have 10,000 data points where only 20,000 are labeled and 80,000 are unlabeled. In such cases, we would employ semi-supervised learning. In semi-supervised learning, we use unlabeled data to gain more of an...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image