Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Graph Analytics with Neo4j

You're reading from   Hands-On Graph Analytics with Neo4j Perform graph processing and visualization techniques using connected data across your enterprise

Arrow left icon
Product type Paperback
Published in Aug 2020
Publisher Packt
ISBN-13 9781839212611
Length 510 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Estelle Scifo Estelle Scifo
Author Profile Icon Estelle Scifo
Estelle Scifo
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Graph Modeling with Neo4j
2. Graph Databases FREE CHAPTER 3. The Cypher Query Language 4. Empowering Your Business with Pure Cypher 5. Section 2: Graph Algorithms
6. The Graph Data Science Library and Path Finding 7. Spatial Data 8. Node Importance 9. Community Detection and Similarity Measures 10. Section 3: Machine Learning on Graphs
11. Using Graph-based Features in Machine Learning 12. Predicting Relationships 13. Graph Embedding - from Graphs to Matrices 14. Section 4: Neo4j for Production
15. Using Neo4j in Your Web Application 16. Neo4j at Scale 17. Other Books You May Enjoy

Why use link prediction?

Link prediction consists of guessing which unknown connections between existing nodes in the graph are more likely to be real, now or in the future. With a proper formulation, this can be turned into a machine learning problem. But before trying to build a model for link prediction, as for any data science task, we must start with a deep understanding of the problem. That will be our goal in this section. First, by using the context of dynamic graphs, we will define what exactly is hidden behind link prediction. We will also review some applications, from marketing to science.

Dynamic graphs

So far in this book, we have studied graphs in a static manner; in other words, we imported graphs from an external data source and the graph content (nodes or relationships) was never changed. Studying the graph structure in this way gives us some information about the data it is representing. However, in a real-life scenario, whether your graph models a road network or an...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime