This chapter described the role of OpenCV and CUDA in real-time object detection and tracking applications. It started with the introduction of object detection and tracking, along with challenges encountered in that process and the applications of it. Different features like color, shape, histograms, and other distinct key-points, like corners, can be used to detect and track objects in an image. Color-based object detection is easier to implement, but it requires that the object should have a distinct color from the background. For shape-based object detection, the Canny edge detection technique has been described to detect edges, and Hough transform has been described for straight line and circle detection. It has many applications, such as land detection, ball tracking, and so on. The color and shape are global features, which are easier to compute and require less...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine