Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Explainable AI (XAI) with Python

You're reading from   Hands-On Explainable AI (XAI) with Python Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800208131
Length 454 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Denis Rothman Denis Rothman
Author Profile Icon Denis Rothman
Denis Rothman
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Explaining Artificial Intelligence with Python 2. White Box XAI for AI Bias and Ethics FREE CHAPTER 3. Explaining Machine Learning with Facets 4. Microsoft Azure Machine Learning Model Interpretability with SHAP 5. Building an Explainable AI Solution from Scratch 6. AI Fairness with Google's What-If Tool (WIT) 7. A Python Client for Explainable AI Chatbots 8. Local Interpretable Model-Agnostic Explanations (LIME) 9. The Counterfactual Explanations Method 10. Contrastive XAI 11. Anchors XAI 12. Cognitive XAI 13. Answers to the Questions 14. Other Books You May Enjoy
15. Index

The architecture of the deep learning model

In this section, we will continue the top-to-bottom, user-oriented approach. This drill-down method takes us from the top layer of a program down to the bottom layer. It is essential to learn how to perceive an application from different perspectives.

We will go from the user's point of view back to the beginning of the process in the following order:

  • Invoking WIT
  • The custom prediction function for WIT

We will first see how the visualization tool is launched.

Invoking WIT

You can choose the number of data points and the tool's height in the form just above WIT as shown in the following screenshot:

Figure 9.22: WIT parameters

The form is driven by the following code:

# Decode an image from tf.example bytestring
def decode_image(ex):
  im_bytes = ex.features.feature['image/encoded'].bytes_list.value[0]
  im = Image.open(BytesIO(im_bytes))
  return im

We already...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image