Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Ensemble Learning with R

You're reading from   Hands-On Ensemble Learning with R A beginner's guide to combining the power of machine learning algorithms using ensemble techniques

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781788624145
Length 376 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Introduction to Ensemble Techniques FREE CHAPTER 2. Bootstrapping 3. Bagging 4. Random Forests 5. The Bare Bones Boosting Algorithms 6. Boosting Refinements 7. The General Ensemble Technique 8. Ensemble Diagnostics 9. Ensembling Regression Models 10. Ensembling Survival Models 11. Ensembling Time Series Models 12. What's Next?
A. Bibliography Index

Ensembling by voting

Ensembling by voting can be used efficiently for classification problems. We now have a set of classifiers, and we need to use them to predict the class of an unknown case. The combining of the predictions of the classifiers can proceed in multiple ways. The two options that we will consider are majority voting, and weighted voting.

Majority voting

Ideas related to voting will be illustrated through an ensemble based on the homogeneous base learners of decision trees, as used in the development of bagging and random forests. First, we will create 500 base learners using the randomForest function and repeat the program in the first block, as seen in Chapter 4, Random Forests. Ensembling has already been performed in that chapter, and we will elaborate on those steps here. First, the code block for setting up the random forest is given here:

> load("../Data/GC2.RData")
> set.seed(12345)
> Train_Test <- sample(c("Train","Test"),nrow...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image